1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
|
*=======================================================================
*
* WCSLIB 8.4 - an implementation of the FITS WCS standard.
* Copyright (C) 1995-2024, Mark Calabretta
*
* This file is part of WCSLIB.
*
* WCSLIB is free software: you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* WCSLIB is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with WCSLIB. If not, see http://www.gnu.org/licenses.
*
* Author: Mark Calabretta, Australia Telescope National Facility, CSIRO.
* http://www.atnf.csiro.au/people/Mark.Calabretta
* $Id: tcel1.f,v 8.4 2024/10/28 13:56:17 mcalabre Exp $
*=======================================================================
PROGRAM TCEL1
*-----------------------------------------------------------------------
*
* tcel1 tests the spherical projection driver routines supplied with
* WCSLIB by drawing native and celestial coordinate graticules for
* Bonne's projection.
*
*-----------------------------------------------------------------------
INTEGER CI, CRVAL1, CRVAL2, ILAT, ILNG, J, K, LATPOL, LNGPOL,
: STAT(361), STATUS
REAL XR(512), YR(512)
DOUBLE PRECISION LAT(181), LNG(361), PHI(361), REF(4), THETA(361),
: X(361), Y(361)
CHARACTER TEXT*72
* On some systems, such as Sun Sparc, the structs MUST be aligned
* on a double precision boundary, done here using a equivalences.
* Failure to do this may result in mysterious "bus errors".
INCLUDE 'cel.inc'
INCLUDE 'prj.inc'
INTEGER CEL(CELLEN)
INTEGER NTV(CELLEN)
INTEGER PRJ(PRJLEN)
DOUBLE PRECISION DUMMY1, DUMMY2, DUMMY3
EQUIVALENCE (CEL,DUMMY1), (NTV,DUMMY2), (PRJ,DUMMY3)
*-----------------------------------------------------------------------
WRITE (*, 10)
10 FORMAT ('Testing WCSLIB celestial coordinate transformation ',
: 'routines (tcel1.f)',/,
: '---------------------------------------------------',
: '------------------')
* Initialize.
STATUS = CELINI (NTV)
* Reference angles for the native graticule (in fact, the defaults).
STATUS = CELPTD (NTV, CEL_REF, 0D0, 1)
STATUS = CELPTD (NTV, CEL_REF, 0D0, 2)
* Set up Bonne's projection with conformal latitude at +35.
STATUS = CELGTI (NTV, CEL_PRJ, PRJ)
STATUS = PRJPTC (PRJ, PRJ_CODE, 'BON', 0)
STATUS = PRJPTD (PRJ, PRJ_PV, 35D0, 1)
STATUS = CELPTI (NTV, CEL_PRJ, PRJ(1), 0)
* Celestial graticule.
STATUS = CELINI (CEL)
STATUS = CELPTI (CEL, CEL_PRJ, PRJ, 0)
* PGPLOT initialization.
CALL PGBEG (0, '/null', 1, 1)
* Define pen colours.
CALL PGSCR (0, 0.00, 0.00, 0.00)
CALL PGSCR (1, 1.00, 1.00, 0.00)
CALL PGSCR (2, 1.00, 1.00, 1.00)
CALL PGSCR (3, 0.50, 0.50, 0.80)
CALL PGSCR (4, 0.80, 0.50, 0.50)
CALL PGSCR (5, 0.80, 0.80, 0.80)
CALL PGSCR (6, 0.50, 0.50, 0.80)
CALL PGSCR (7, 0.80, 0.50, 0.50)
CALL PGSCR (8, 0.30, 0.50, 0.30)
* Define PGPLOT viewport.
CALL PGENV (-180.0, 180.0, -90.0, 140.0, 1, -2)
* Loop over CRVAL2, LONPOLE, and LATPOLE with CRVAL1 incrementing by
* 15 degrees each time (it has an uninteresting effect).
CRVAL1 = -180
DO 190 CRVAL2 = -90, 90, 30
DO 180 LNGPOL = -180, 180, 30
DO 170 LATPOL = -1, 1, 2
* For the celestial graticule, set the celestial
* coordinates of the reference point of the projection
* (which for Bonne's projection is at the intersection of
* the native equator and prime meridian), the native
* longitude of the celestial pole, and extra information
* needed to determine the celestial latitude of the native
* pole. These correspond to FITS keywords CRVAL1, CRVAL2,
* LONPOLE, and LATPOLE.
STATUS = CELPTI (CEL, CEL_FLAG, 0, 0)
STATUS = CELPTD (CEL, CEL_REF, DBLE(CRVAL1), 1)
STATUS = CELPTD (CEL, CEL_REF, DBLE(CRVAL2), 2)
STATUS = CELPTD (CEL, CEL_REF, DBLE(LNGPOL), 3)
STATUS = CELPTD (CEL, CEL_REF, DBLE(LATPOL), 4)
* Skip invalid values of LONPOLE.
STATUS = CELSET (CEL)
IF (STATUS.NE.0) GO TO 170
* Skip redundant values of LATPOLE.
STATUS = CELGTD (CEL, CEL_REF, REF)
IF (LATPOL.EQ.1 .AND. ABS(REF(4)).LT.0.1D0) GO TO 170
* Buffer PGPLOT output.
CALL PGBBUF ()
CALL PGERAS ()
* Write a descriptive title.
TEXT = 'Bonne''s projection (BON) - 15 degree graticule'
WRITE (*, '(/,A)') TEXT
CALL PGTEXT (-180.0, -100.0, TEXT)
WRITE (TEXT, 20) REF(1), REF(2)
20 FORMAT ('centred on celestial coordinates (',F7.2,',',F6.2,
: ')')
WRITE (*, '(A)') TEXT
CALL PGTEXT (-180.0, -110.0, TEXT)
WRITE (TEXT, 30) REF(3), REF(4)
30 FORMAT ('with north celestial pole at native coordinates (',
: F7.2,',',F7.2,')')
WRITE (*, '(A)') TEXT
CALL PGTEXT (-180.0, -120.0, TEXT)
* Draw the native graticule faintly in the background.
CALL PGSCI (8)
* Draw native meridians of longitude.
J = 1
DO 40 ILAT = -90, 90
LAT(J) = DBLE(ILAT)
J = J + 1
40 CONTINUE
DO 60 ILNG = -180, 180, 15
LNG(1) = DBLE(ILNG)
IF (ILNG.EQ.-180) LNG(1) = -179.99D0
IF (ILNG.EQ.+180) LNG(1) = +179.99D0
* Dash the longitude of the celestial pole.
IF (MOD(ILNG-LNGPOL,360).EQ.0) THEN
CALL PGSLS (2)
CALL PGSLW (5)
END IF
STATUS = CELS2X (NTV, 1, 181, 1, 1, LNG, LAT, PHI, THETA,
: X, Y, STAT)
K = 0
DO 50 J = 1, 181
IF (STAT(J).NE.0) THEN
IF (K.GT.1) CALL PGLINE (K, XR, YR)
K = 0
GO TO 50
END IF
K = K + 1
XR(K) = -REAL(X(J))
YR(K) = REAL(Y(J))
50 CONTINUE
CALL PGLINE (K, XR, YR)
CALL PGSLS (1)
CALL PGSLW (1)
60 CONTINUE
* Draw native parallels of latitude.
LNG(1) = -179.99D0
LNG(361) = +179.99D0
J = 2
ILNG = -179
DO 70 ILNG = -179, 180
LNG(J) = DBLE(ILNG)
J = J + 1
70 CONTINUE
DO 90 ILAT = -90, 90, 15
LAT(1) = DBLE(ILAT)
STATUS = CELS2X (NTV, 361, 1, 1, 1, LNG, LAT, PHI, THETA,
: X, Y, STAT)
K = 0
DO 80 J = 1, 361
IF (STAT(J).NE.0) THEN
IF (K.GT.1) CALL PGLINE (K, XR, YR)
K = 0
GO TO 80
END IF
K = K + 1
XR(K) = -REAL(X(J))
YR(K) = REAL(Y(J))
80 CONTINUE
CALL PGLINE (K, XR, YR)
90 CONTINUE
* Draw a colour-coded celestial coordinate graticule.
CI = 1
* Draw celestial meridians of longitude.
J = 1
DO 100 ILAT = -90, 90
LAT(J) = DBLE(ILAT)
J = J + 1
100 CONTINUE
DO 120 ILNG = -180, 180, 15
LNG(1) = DBLE(ILNG)
CI = CI + 1
IF (CI.GT.7) CI = 2
IF (ILNG.EQ.0) THEN
CALL PGSCI (1)
ELSE
CALL PGSCI (CI)
END IF
* Dash the reference longitude.
IF (MOD(ILNG-CRVAL1,360).EQ.0) THEN
CALL PGSLS (2)
CALL PGSLW (5)
END IF
STATUS = CELS2X (CEL, 1, 181, 1, 1, LNG, LAT, PHI, THETA,
: X, Y, STAT)
K = 0
DO 110 J = 1, 181
IF (STAT(J).NE.0) THEN
IF (K.GT.1) CALL PGLINE (K, XR, YR)
K = 0
GO TO 110
END IF
* Test for discontinuities.
IF (J.GT.1) THEN
IF (ABS(X(J) - X(J-1)).GT.4D0 .OR.
: ABS(Y(J) - Y(J-1)).GT.4D0) THEN
IF (K.GT.1) CALL PGLINE (K, XR, YR)
K = 0
END IF
END IF
K = K + 1
XR(K) = -REAL(X(J))
YR(K) = REAL(Y(J))
110 CONTINUE
CALL PGLINE (K, XR, YR)
CALL PGSLS (1)
CALL PGSLW (1)
120 CONTINUE
* Draw celestial parallels of latitude.
J = 1
DO 130 ILNG = -180, 180
LNG(J) = DBLE(ILNG)
J = J + 1
130 CONTINUE
CI = 1
DO 150 ILAT = -90, 90, 15
LAT(1) = DBLE(ILAT)
CI = CI + 1
IF (CI.GT.7) CI = 2
IF (ILAT.EQ.0) THEN
CALL PGSCI (1)
ELSE
CALL PGSCI (CI)
END IF
* Dash the reference latitude.
IF (ILAT.EQ.CRVAL2) THEN
CALL PGSLS (2)
CALL PGSLW (5)
END IF
STATUS = CELS2X (CEL, 361, 1, 1, 1, LNG, LAT, PHI, THETA,
: X, Y, STAT)
K = 0
DO 140 J = 1, 361
IF (STAT(J).NE.0) THEN
IF (K.GT.1) CALL PGLINE (K, XR, YR)
K = 0
GO TO 140
END IF
* Test for discontinuities.
IF (J.GT.1) THEN
IF (ABS(X(J) - X(J-1)).GT.4D0 .OR.
: ABS(Y(J) - Y(J-1)).GT.4D0) THEN
IF (K.GT.1) CALL PGLINE (K, XR, YR)
K = 0
END IF
END IF
K = K + 1
XR(K) = -REAL(X(J))
YR(K) = REAL(Y(J))
140 CONTINUE
CALL PGLINE (K, XR, YR)
CALL PGSLS (1)
CALL PGSLW (1)
150 CONTINUE
* Flush PGPLOT buffer.
CALL PGEBUF ()
WRITE (*, '(A,$)') ' Type <RETURN> for next page: '
READ (*, *, END=160)
* Cycle through celestial longitudes.
160 CRVAL1 = CRVAL1 + 15
IF (CRVAL1.GT.180) CRVAL1 = -180
* Skip boring celestial latitudes.
IF (CRVAL2.EQ.0) GO TO 190
170 CONTINUE
180 CONTINUE
190 CONTINUE
CALL PGASK (0)
CALL PGEND
END
|