1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409
|
/*** File caphot.c
*** January 30, 2002
*** By Jessica Mink from Fortran code by Sam Conner (MIT, 1984)
*** Copyright (C) 2002
*** Smithsonian Astrophysical Observatory, Cambridge, MA, USA
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Correspondence concerning WCSTools should be addressed as follows:
Internet email: jmink@cfa.harvard.edu
Postal address: Jessica Mink
Smithsonian Astrophysical Observatory
60 Garden St.
Cambridge, MA 02138 USA
*/
#include <math.h>
#include "fitshead.h"
#include "imio.h"
static double apint();
static double imapfr();
/* CAPHOT -- Perform rigorous circular aperture photometry using the imapfr()
* subroutine to determine the fraction of a square pixel enclosed
* by a circular aperture.
*/
void
caphot (imbuff,header,cx,cy,rad,sumw,wsum)
char *imbuff; /* address of start of image buffer */
char *header; /* image FITS header */
double cx,cy; /* center x,y of aperture */
double rad; /* radius of aperture */
double sumw; /* sum of values of pixel weights (returned) */
double wsum; /* sum of weighted pixel fluxes (returned) */
{
double x, y, factor, flux, bs, bz;
int ix1, ix2, iy1, iy2, ix, iy, bitpix, nx, ny;
sumw = 0.0;
wsum = 0.0;
hgeti4 (header, "BITPIX", &bitpix);
hgeti4 (header, "NAXIS1", &nx);
hgeti4 (header, "NAXIS2", &ny);
hgetr8 (header, "BSCALE", &bs);
hgeti4 (header, "BZERO", &bz);
/* Find range of ys to check */
iy1 = (int) (cy - rad);
iy2 = (int) (cy + rad + 0.99999);
if (iy1 < 1)
iy1 = 1;
if (iy2 > ny)
iy2 = ny;
/* Find range of xumns to check */
ix1 = (int) (cx - rad);
ix2 = (int) (cx + rad + 0.99999);
if (ix1 < 1)
ix1 = 1;
if (ix2 > nx)
ix2 = nx;
for (iy = iy1; iy <= iy2; iy++) {
y = (double) iy;
for (ix = ix1; ix <= ix2; ix++) {
x = (double) ix;
factor = imapfr (x,y,cx,cy,rad);
sumw = sumw + factor;
flux = getpix1 (imbuff, bitpix, nx, ny, bz, bs, ix, iy);
wsum = wsum + (factor * flux);
/* fprintf (stderr, "IMAPSB: (%d,%d)= %f weight= %f\n",
ix,iy,flux,factor); */
}
}
/* fprintf (stderr, "IMAPSB: sum of weights = %f\n", sumw);
fprintf (stderr, "IMAPSB: sum of weighted intensity = %f\n", wsum);
*/
return;
}
/* IMAPFR -- Determine the fraction of a square pixel that is included
* within the boundary of a circle of arbitrary center and radius
*/
static double
imapfr (pcol,prow,ccol,crow,rad)
double pcol,prow; /* column, row of pixel */
double ccol,crow; /* column, row of center of circle */
double rad; /* radius of circle in pixels */
{
int icorn[4], ncorn, j, i;
double dist, xdiff, y0, y1, ydiff, x0, x1, x, y, dc5, dr5;
double cterm, ulim, llim, dc, dr, dx, dy;
double frac; /* fraction of pixel within circle */
/* Compute distance to center of circle from most distant corner of pixel */
dc = fabs (pcol - ccol);
dr = fabs (prow - crow);
dc5 = dc + 0.5;
dr5 = dr + 0.5;
dist = sqrt ((dc5 * dc5) + (dr5 * dr5));
dc5 = dc - 0.5;
dr5 = dr - 0.5;
/* if the pixel is completely enclosed by the aperture, return 1 */
if (dist <= rad)
return (1.0);
/* if the pixel is not completely included, compute distance from the
center of the circle to the nearest point on the periphery of the pixel*/
if ((pcol-0.5) < ccol && ccol < (pcol+.5)) {
dist = dr5;
/* the pixel is completely excluded from the aperture */
if (dist >= rad)
return (0.0);
else if ((prow - 0.5) < crow && crow < (prow + 0.5)) {
dist = dc5;
/* the pixel is completely excluded from the aperture */
if (dist >= rad)
return (0.0);
}
else
dist = sqrt (dc5*dc5 + dr5*dr5);
/* the pixel is completely excluded from the aperture */
if (dist >= rad)
return (0.0);
}
/* If the pixel is partially included in the aperture, determine how
many corners are enclosed */
ncorn = 1;
y = prow - 1.5;
for (i = 0; i < 2; i++) {
y = y + 1.0;
x = pcol - 1.50;
for (j = 0; j < 2; j++) {
icorn[j+(i*2)] = 0;
x = x + 1.0;
dx = x - ccol;
dy = y - crow;
dist = sqrt (dx*dx + dy*dy);
if (dist < rad) {
ncorn = ncorn + 1;
icorn[j+(i*2)] = 1;
}
}
}
/* Depending on number of corners enclosed,
branch to appropriate computation */
/* If no corners are enclosed, determine whether the slice is vertical or
horizontal */
if (ncorn < 1) {
/* If the slice is vertical (at the sides of the aperture,
at extreme x), determine the limits of integration */
if ((pcol - 0.5) >= ccol || ccol >= (pcol + 0.5)) {
xdiff = fabs (pcol - ccol) - 0.5;
dx = sqrt (rad*rad - xdiff*xdiff);
y0 = crow - dx;
y1 = crow + dx;
if (ccol >= pcol)
x = pcol + 0.5;
else
x = pcol - 0.5;
/* Evaluate integral */
frac = -xdiff * (y1 - y0) + apint ((y1 - crow), rad) -
apint ((y0 - crow), rad);
return (frac);
}
/* If the slice is horizontal (at top or bottom of the aperture, at
extreme y), determine the limits of integration. */
else {
ydiff = fabs (prow - crow) - 0.5;
dy = sqrt (rad*rad - ydiff*ydiff);
x0 = ccol - dy;
x1 = ccol + dy;
if (crow >= prow)
y = prow + 0.5;
else
y = prow - 0.5;
/* Evaluate integral */
frac = -ydiff*(x1 - x0) + apint ((x1 - ccol),rad) -
apint ((x0 - ccol),rad);
return (frac);
}
}
/* if one corner is enclosed, find direction (ne,nw,se,sw) from the center*/
else if (ncorn < 2) {
if (pcol < ccol) {
/* Determine the limits of integration */
ydiff = fabs (prow - crow) - 0.5;;
x0 = ccol - sqrt (rad*rad - ydiff*ydiff);
if (crow >= prow)
y = prow + 0.5;
else
y = prow - 0.5;
/* Evaluate integral */
frac = -ydiff*(pcol + 0.5 - x0) + apint ((pcol + 0.5 - ccol),rad) -
apint ((x0 - ccol),rad);
return (frac);
}
else {
/* Determine the limits of integration */
ydiff = fabs (crow - prow) - 0.5;
x1 = ccol + sqrt (rad*rad - ydiff*ydiff);
if (crow >= prow)
y = prow + 0.5;
else
y = prow - 0.5;
/* Evaluate integral */
frac = -ydiff*(x1 - pcol + 0.5) + apint ((x1 - ccol),rad) -
apint ((pcol - .5 - ccol),rad);
return (frac);
}
}
/* If two corners are enclosed, this problem has two cases: one in
which the aperture boundary intersects the pixel boundary twice,
and another in which it intersects the pixel boundaries 4 times */
/* determine whether this may be a 4-intersection configuration */
else if (ncorn < 3) {
if (((pcol - 0.5) < ccol && ccol < (pcol + .5) &&
(fabs(crow - prow) + 0.5) < rad) ||
((prow - 0.5) < crow && crow < (prow + 0.5) &&
(fabs(ccol - pcol) + 0.5) < rad)) {
/* if the pixel boundary intersects the aperture boundary in four places,
determine whether the pixel is east-west or north-south. */
/* pixel is east-west */
if ((pcol - 0.5) >= ccol || (pcol + 0.5) <= ccol) {
xdiff = dc + 0.5;
/* Determine the limits of integration */
dx = sqrt (rad*rad - xdiff*xdiff);
y0 = crow - dx;
y1 = crow + dx;
if (pcol >= ccol)
x = pcol + .5;
else
x = pcol - .5;
frac = 1. - xdiff*(y0 - y1 + 1.0) +
apint ((y0 - crow), rad) -
apint ((prow - 0.5 - crow), rad) +
apint ((prow + 0.5 - crow), rad) -
apint ((y1 - crow), rad);
return (frac);
}
/* Pixel is north-south */
else {
ydiff = dr + 0.5;
/* determine the limits of integration */
dy = sqrt (rad*rad - ydiff*ydiff);
/* x0 is the x-coordinate of the small x intercept */
x0 = ccol - dy;
/* x1 is the x-coordinate of the large x intercept */
x1 = ccol + dy;
if (prow >= crow)
y = prow + 0.5;
else
y = prow - 0.5;
frac = 1. - ydiff * (x0 - x1 + 1.0) +
apint ((x0 - ccol), rad) -
apint ((pcol - 0.5 - ccol), rad) +
apint ((pcol + 0.5 - ccol), rad) -
apint ((x1 - ccol), rad);
return (frac);
}
}
/* in the two-intersection case, determine which corners are included */
else {
/* the pixel is north or south of the center of the aperture */
if (icorn[0]*icorn[1] == 1 || icorn[2]*icorn[3] == 1) {
cterm = 0.5 - dr;
ulim = apint ((pcol + 0.5 - ccol) ,rad);
llim = apint ((pcol - 0.5 - ccol) ,rad);
frac = cterm + ulim - llim;
return (frac);
}
/* the pixel is east or west of the center */
else {
cterm = 0.5 - dc;
ulim = apint ((prow + 0.5 - crow), rad);
llim = apint ((prow - 0.5 - crow), rad);
frac = cterm + ulim - llim;
return (frac);
}
}
}
/* if three corners are enclosed, determine whether the corner in question
is east or west of the center of the aperture */
else {
if (pcol > ccol) {
ydiff = dr + 0.5;
if (prow >= crow)
y = prow + 0.5;
else
y = prow - 0.5;
x0 = ccol + sqrt (rad*rad - ydiff*ydiff);
frac = 1.0 - (ydiff * (pcol + 0.5 - x0)) +
apint ((pcol + 0.5 - ccol), rad) -
apint ((x0 - ccol), rad);
return (frac);
}
else {
ydiff = dr + 0.5;
if (prow >= crow)
y = prow + 0.5;
else
y = prow - 0.5;
x0 = ccol - sqrt (rad*rad - ydiff*ydiff);
frac = 1. - ydiff*(x0 - pcol + 0.5) +
apint ((x0 - ccol),rad) -
apint ((pcol - 0.5 - ccol),rad);
return (frac);
}
}
}
/* APINT -- Evaluate the integral of sqrt (rad**2 - x**2) dx at one limit */
static double
apint (x, rad)
double x;
double rad;
{
double x2,rad2,arg,arg2,arcsin,pi;
pi = 3.141592654;
arg = x / rad;
x2 = x * x;
rad2 = rad * rad;
arg2 = x2 / rad2;
arcsin = atan2 (arg, sqrt (1.0 - arg2));
if ((1. - fabs (arg)) < 0.000001) {
if (arg >= 0)
arcsin = pi / 2.0;
else
arcsin = -pi / 2.0;
}
return (0.5 * (x * sqrt (rad2 - x2) + rad2 * arcsin));
}
/* Jul 4 1984 Original Fortran program by Sam Conner at MIT
* Mar 2 1987 Original VAX Unix version
* Mar 2 1987 declare undecldared variables x, y, and j
*
* Jan 8 1993 Modify to handle arbitrary byte-per-pixel images
* Apr 16 1993 Declare undeclared variables iy, ic0, and ir0
*
* Jan 30 2002 Translate from Fortran to C
*/
|