1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917
|
/*
poly.c
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*
* Part of: A program using Polynomials
*
* Author: E.BERTIN (IAP)
*
* Contents: Polynomial fitting
*
* Last modify: 08/03/2005
*
*%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "wcslib.h"
#define QCALLOC(ptr, typ, nel) \
{if (!(ptr = (typ *)calloc((size_t)(nel),sizeof(typ)))) \
qerror("Not enough memory for ", \
#ptr " (" #nel " elements) !");;}
#define QMALLOC(ptr, typ, nel) \
{if (!(ptr = (typ *)malloc((size_t)(nel)*sizeof(typ)))) \
qerror("Not enough memory for ", \
#ptr " (" #nel " elements) !");;}
/********************************* qerror ************************************/
/*
I hope it will never be used!
*/
void qerror(char *msg1, char *msg2)
{
fprintf(stderr, "\n> %s%s\n\n",msg1,msg2);
abort();
}
/****** poly_init ************************************************************
PROTO polystruct *poly_init(int *group, int ndim, int *degree, int ngroup)
PURPOSE Allocate and initialize a polynom structure.
INPUT 1D array containing the group for each parameter,
number of dimensions (parameters),
1D array with the polynomial degree for each group,
number of groups.
OUTPUT polystruct pointer.
NOTES -.
AUTHOR E. Bertin (IAP)
VERSION 08/03/2003
***/
polystruct *poly_init(int *group, int ndim, int *degree, int ngroup)
{
void qerror(char *msg1, char *msg2);
polystruct *poly;
char str[512];
int nd[POLY_MAXDIM];
int *groupt,
d,g,n,num,den;
QCALLOC(poly, polystruct, 1);
if ((poly->ndim=ndim) > POLY_MAXDIM)
{
sprintf(str, "The dimensionality of the polynom (%d) exceeds the maximum\n"
"allowed one (%d)", ndim, POLY_MAXDIM);
qerror("*Error*: ", str);
}
if (ndim)
QMALLOC(poly->group, int, poly->ndim);
for (groupt=poly->group, d=ndim; d--;)
*(groupt++) = *(group++)-1;
poly->ngroup = ngroup;
if (ngroup)
{
group = poly->group; /* Forget the original *group */
QMALLOC(poly->degree, int, poly->ngroup);
/*-- Compute the number of context parameters for each group */
memset(nd, 0, ngroup*sizeof(int));
for (d=0; d<ndim; d++)
{
if ((g=group[d])>=ngroup)
qerror("*Error*: polynomial GROUP out of range", "");
nd[g]++;
}
}
/* Compute the total number of coefficients */
poly->ncoeff = 1;
for (g=0; g<ngroup; g++)
{
if ((d=poly->degree[g]=*(degree++))>POLY_MAXDEGREE)
{
sprintf(str, "The degree of the polynom (%d) exceeds the maximum\n"
"allowed one (%d)", poly->degree[g], POLY_MAXDEGREE);
qerror("*Error*: ", str);
}
/*-- There are (n+d)!/(n!d!) coeffs per group, that is Prod_(i<=d) (n+i)/i */
for (num=den=1, n=nd[g]; d; num*=(n+d), den*=d--);
poly->ncoeff *= num/den;
}
QMALLOC(poly->basis, double, poly->ncoeff);
QCALLOC(poly->coeff, double, poly->ncoeff);
return poly;
}
/****** poly_end *************************************************************
PROTO void poly_end(polystruct *poly)
PURPOSE Free a polynom structure and everything it contains.
INPUT polystruct pointer.
OUTPUT -.
NOTES -.
AUTHOR E. Bertin (IAP, Leiden observatory & ESO)
VERSION 09/04/2000
***/
void poly_end(polystruct *poly)
{
if (poly)
{
free(poly->coeff);
free(poly->basis);
free(poly->degree);
free(poly->group);
free(poly);
}
}
/****** poly_func ************************************************************
PROTO double poly_func(polystruct *poly, double *pos)
PURPOSE Evaluate a multidimensional polynom.
INPUT polystruct pointer,
pointer to the 1D array of input vector data.
OUTPUT Polynom value.
NOTES Values of the basis functions are updated in poly->basis.
AUTHOR E. Bertin (IAP)
VERSION 03/03/2004
***/
double poly_func(polystruct *poly, double *pos)
{
double xpol[POLY_MAXDIM+1];
double *post, *xpolt, *basis, *coeff, xval;
long double val;
int expo[POLY_MAXDIM+1], gexpo[POLY_MAXDIM+1];
int *expot, *degree,*degreet, *group,*groupt, *gexpot,
d,g,t, ndim;
/* Prepare the vectors and counters */
ndim = poly->ndim;
basis = poly->basis;
coeff = poly->coeff;
group = poly->group;
degree = poly->degree;
if (ndim)
{
for (xpolt=xpol, expot=expo, post=pos, d=ndim; --d;)
{
*(++xpolt) = 1.0;
*(++expot) = 0;
}
for (gexpot=gexpo, degreet=degree, g=poly->ngroup; g--;)
*(gexpot++) = *(degreet++);
if (gexpo[*group])
gexpo[*group]--;
}
/* The constant term is handled separately */
val = *(coeff++);
*(basis++) = 1.0;
*expo = 1;
*xpol = *pos;
/* Compute the rest of the polynom */
for (t=poly->ncoeff; --t; )
{
/*-- xpol[0] contains the current product of the x^n's */
val += (*(basis++)=*xpol)**(coeff++);
/*-- A complex recursion between terms of the polynom speeds up computations */
/*-- Not too good for roundoff errors (prefer Horner's), but much easier for */
/*-- multivariate polynomials: this is why we use a long double accumulator */
post = pos;
groupt = group;
expot = expo;
xpolt = xpol;
for (d=0; d<ndim; d++, groupt++)
if (gexpo[*groupt]--)
{
++*(expot++);
xval = (*(xpolt--) *= *post);
while (d--)
*(xpolt--) = xval;
break;
}
else
{
gexpo[*groupt] = *expot;
*(expot++) = 0;
*(xpolt++) = 1.0;
post++;
}
}
return (double)val;
}
/****** poly_fit *************************************************************
PROTO double poly_fit(polystruct *poly, double *x, double *y, double *w,
int ndata, double *extbasis)
PURPOSE Least-Square fit of a multidimensional polynom to weighted data.
INPUT polystruct pointer,
pointer to the (pseudo)2D array of inputs to basis functions,
pointer to the 1D array of data values,
pointer to the 1D array of data weights,
number of data points,
pointer to a (pseudo)2D array of computed basis function values.
OUTPUT Chi2 of the fit.
NOTES If different from NULL, extbasis can be provided to store the
values of the basis functions. If x==NULL and extbasis!=NULL, the
precomputed basis functions stored in extbasis are used (which saves
CPU). If w is NULL, all points are given identical weight.
AUTHOR E. Bertin (IAP, Leiden observatory & ESO)
VERSION 08/03/2005
***/
void poly_fit(polystruct *poly, double *x, double *y, double *w, int ndata,
double *extbasis)
{
void qerror(char *msg1, char *msg2);
double /*offset[POLY_MAXDIM],*/x2[POLY_MAXDIM],
*alpha,*alphat, *beta,*betat, *basis,*basis1,*basis2, *coeff,
*extbasist,*xt,
val,wval,yval;
int ncoeff, ndim, matsize,
d,i,j,n;
if (!x && !extbasis)
qerror("*Internal Error*: One of x or extbasis should be "
"different from NULL\nin ", "poly_func()");
ncoeff = poly->ncoeff;
ndim = poly->ndim;
matsize = ncoeff*ncoeff;
basis = poly->basis;
extbasist = extbasis;
QCALLOC(alpha, double, matsize);
QCALLOC(beta, double, ncoeff);
/* Subtract an average offset to maintain precision (droped for now ) */
/*
if (x)
{
for (d=0; d<ndim; d++)
offset[d] = 0.0;
xt = x;
for (n=ndata; n--;)
for (d=0; d<ndim; d++)
offset[d] += *(xt++);
for (d=0; d<ndim; d++)
offset[d] /= (double)ndata;
}
*/
/* Build the covariance matrix */
xt = x;
for (n=ndata; n--;)
{
if (x)
{
/*---- If x!=NULL, compute the basis functions */
for (d=0; d<ndim; d++)
x2[d] = *(xt++)/* - offset[d]*/;
poly_func(poly, x2);
/*---- If, in addition, extbasis is provided, then fill it */
if (extbasis)
for (basis1=basis,j=ncoeff; j--;)
*(extbasist++) = *(basis1++);
}
else
/*---- If x==NULL, then rely on pre-computed basis functions */
for (basis1=basis,j=ncoeff; j--;)
*(basis1++) = *(extbasist++);
basis1 = basis;
wval = w? *(w++) : 1.0;
yval = *(y++);
betat = beta;
alphat = alpha;
for (j=ncoeff; j--;)
{
val = *(basis1++)*wval;
*(betat++) += val*yval;
for (basis2=basis,i=ncoeff; i--;)
*(alphat++) += val**(basis2++);
}
}
/* Solve the system */
poly_solve(alpha,beta,ncoeff);
free(alpha);
/* Now fill the coeff array with the result of the fit */
betat = beta;
coeff = poly->coeff;
for (j=ncoeff; j--;)
*(coeff++) = *(betat++);
/*
poly_addcste(poly, offset);
*/
free(beta);
return;
}
/****** poly_addcste *********************************************************
PROTO void poly_addcste(polystruct *poly, double *cste)
PURPOSE Modify matrix coefficients to mimick the effect of adding a cst to
the input of a polynomial.
INPUT Pointer to the polynomial structure,
Pointer to the vector of cst.
OUTPUT -.
NOTES Requires quadruple-precision. **For the time beeing, this function
returns completely wrong results!!**
AUTHOR E. Bertin (IAP)
VERSION 03/03/2004
***/
void poly_addcste(polystruct *poly, double *cste)
{
long double *acoeff;
double *coeff,*mcoeff,*mcoefft,
val;
int *mpowers,*powers,*powerst,*powerst2,
i,j,n,p, denum, flag, maxdegree, ncoeff, ndim;
ncoeff = poly->ncoeff;
ndim = poly->ndim;
maxdegree = 0;
for (j=0; j<poly->ngroup; j++)
if (maxdegree < poly->degree[j])
maxdegree = poly->degree[j];
maxdegree++; /* Actually we need maxdegree+1 terms */
QCALLOC(acoeff, long double, ncoeff);
QCALLOC(mcoeff, double, ndim*maxdegree);
QCALLOC(mpowers, int, ndim);
mcoefft = mcoeff; /* To avoid gcc -Wall warnings */
powerst = powers = poly_powers(poly);
coeff = poly->coeff;
for (i=0; i<ncoeff; i++)
{
for (j=0; j<ndim; j++)
{
mpowers[j] = n = *(powerst++);
mcoefft = mcoeff+j*maxdegree+n;
denum = 1;
val = 1.0;
for (p=n+1; p--;)
{
*(mcoefft--) = val;
val *= (cste[j]*(n--))/(denum++); /* This is C_n^p X^(n-p) */
}
}
/*-- Update all valid coefficients */
powerst2 = powers;
for (p=0; p<ncoeff; p++)
{
/*---- Check that this combination of powers is included in the series above */
flag = 0;
for (j=0; j<ndim; j++)
if (mpowers[j] < powerst2[j])
{
flag = 1;
powerst2 += ndim;
break;
}
if (flag == 1)
continue;
val = 1.0;
mcoefft = mcoeff;
for (j=ndim; j--; mcoefft += maxdegree)
val *= mcoefft[*(powerst2++)];
acoeff[i] += val*coeff[p];
/*
printf("%g \n", val);
*/
}
}
/* Add the new coefficients to the previous ones */
for (i=0; i<ncoeff; i++)
{
/*
printf("%g %g\n", coeff[i], (double)acoeff[i]);
*/
coeff[i] = (double)acoeff[i];
}
free(acoeff);
free(mcoeff);
free(mpowers);
free(powers);
return;
}
/****** poly_solve ************************************************************
PROTO void poly_solve(double *a, double *b, int n)
PURPOSE Solve a system of linear equations, using Cholesky decomposition or
SVD (if the former fails due to hidden correlation between variables).
INPUT Pointer to the (pseudo 2D) matrix of coefficients,
pointer to the 1D column vector,
matrix size.
OUTPUT -.
NOTES -.
AUTHOR E. Bertin (IAP, Leiden observatory & ESO)
VERSION 21/09/2004
***/
void poly_solve(double *a, double *b, int n)
{
double *vmat,*wmat;
if (cholsolve(a,b,n))
{
QMALLOC(vmat, double, n*n);
QMALLOC(wmat, double, n);
svdsolve(a, b, n,n, vmat,wmat);
free(vmat);
free(wmat);
}
return;
}
/****** cholsolve *************************************************************
PROTO void cholsolve(double *a, double *b, int n)
PURPOSE Solve a system of linear equations, using Cholesky decomposition.
INPUT Pointer to the (pseudo 2D) matrix of coefficients,
pointer to the 1D column vector,
matrix size.
OUTPUT -1 if the matrix is not positive-definite, 0 otherwise.
NOTES Based on Numerical Recipes, 2nd ed. (Chap 2.9). The matrix of
coefficients must be symmetric and positive definite.
AUTHOR E. Bertin (IAP, Leiden observatory & ESO)
VERSION 28/10/2003
***/
int cholsolve(double *a, double *b, int n)
{
void qerror(char *msg1, char *msg2);
double *p, *x, sum;
int i,j,k;
/* Allocate memory to store the diagonal elements */
QMALLOC(p, double, n);
/* Cholesky decomposition */
for (i=0; i<n; i++)
for (j=i; j<n; j++)
{
for (sum=a[i*n+j],k=i-1; k>=0; k--)
sum -= a[i*n+k]*a[j*n+k];
if (i==j)
{
if (sum <= 0.0)
{
free(p);
return -1;
}
p[i] = sqrt(sum);
}
else
a[j*n+i] = sum/p[i];
}
/* Solve the system */
x = b; /* Just to save memory: the solution replaces b */
for (i=0; i<n; i++)
{
for (sum=b[i],k=i-1; k>=0; k--)
sum -= a[i*n+k]*x[k];
x[i] = sum/p[i];
}
for (i=n-1; i>=0; i--)
{
for (sum=x[i],k=i+1; k<n; k++)
sum -= a[k*n+i]*x[k];
x[i] = sum/p[i];
}
free(p);
return 0;
}
/****** svdsolve *************************************************************
PROTO void svdsolve(double *a, double *b, int m, int n, double *vmat,
double *wmat)
PURPOSE General least-square fit A.x = b, based on Singular Value
Decomposition (SVD).
Loosely adapted from Numerical Recipes in C, 2nd Ed. (p. 671).
INPUT Pointer to the (pseudo 2D) matrix of coefficients,
pointer to the 1D column vector (replaced by solution in output),
number of matrix rows,
number of matrix columns,
pointer to the (pseudo 2D) SVD matrix,
pointer to the diagonal (1D) matrix of singular values.
OUTPUT -.
NOTES Loosely adapted from Numerical Recipes in C, 2nd Ed. (p. 671). The a
and v matrices are transposed with respect to the N.R. convention.
AUTHOR E. Bertin (IAP)
VERSION 26/12/2003
***/
void svdsolve(double *a, double *b, int m, int n, double *vmat, double *wmat)
{
#define MAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1) > (maxarg2) ?\
(maxarg1) : (maxarg2))
#define PYTHAG(a,b) ((at=fabs(a)) > (bt=fabs(b)) ? \
(ct=bt/at,at*sqrt(1.0+ct*ct)) \
: (bt ? (ct=at/bt,bt*sqrt(1.0+ct*ct)): 0.0))
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a))
#define TOL 1.0e-11
void qerror(char *msg1, char *msg2);
int flag,i,its,j,jj,k,l,mmi,nm, nml;
double *w,*ap,*ap0,*ap1,*ap10,*rv1p,*vp,*vp0,*vp1,*vp10,
*bp,*tmpp, *rv1,*tmp, *sol,
c,f,h,s,x,y,z,
anorm, g, scale,
at,bt,ct,maxarg1,maxarg2,
thresh, wmax;
anorm = g = scale = 0.0;
if (m < n)
qerror("*Error*: Not enough rows for solving the system ", "in svdfit()");
sol = b; /* The solution overwrites the input column matrix */
QMALLOC(rv1, double, n);
QMALLOC(tmp, double, n);
l = nm = nml = 0; /* To avoid gcc -Wall warnings */
for (i=0;i<n;i++)
{
l = i+1;
nml = n-l;
rv1[i] = scale*g;
g = s = scale = 0.0;
if ((mmi = m - i) > 0)
{
ap = ap0 = a+i*(m+1);
for (k=mmi;k--;)
scale += fabs(*(ap++));
if (scale)
{
for (ap=ap0,k=mmi; k--; ap++)
{
*ap /= scale;
s += *ap**ap;
}
f = *ap0;
g = -SIGN(sqrt(s),f);
h = f*g-s;
*ap0 = f-g;
ap10 = a+l*m+i;
for (j=nml;j--; ap10+=m)
{
for (s=0.0,ap=ap0,ap1=ap10,k=mmi; k--;)
s += *(ap1++)**(ap++);
f = s/h;
for (ap=ap0,ap1=ap10,k=mmi; k--;)
*(ap1++) += f**(ap++);
}
for (ap=ap0,k=mmi; k--;)
*(ap++) *= scale;
}
}
wmat[i] = scale*g;
g = s = scale = 0.0;
if (i < m && i+1 != n)
{
ap = ap0 = a+i+m*l;
for (k=nml;k--; ap+=m)
scale += fabs(*ap);
if (scale)
{
for (ap=ap0,k=nml;k--; ap+=m)
{
*ap /= scale;
s += *ap**ap;
}
f=*ap0;
g = -SIGN(sqrt(s),f);
h=f*g-s;
*ap0=f-g;
rv1p = rv1+l;
for (ap=ap0,k=nml;k--; ap+=m)
*(rv1p++) = *ap/h;
ap10 = a+l+m*l;
for (j=m-l; j--; ap10++)
{
for (s=0.0,ap=ap0,ap1=ap10,k=nml; k--; ap+=m,ap1+=m)
s += *ap1**ap;
rv1p = rv1+l;
for (ap1=ap10,k=nml;k--; ap1+=m)
*ap1 += s**(rv1p++);
}
for (ap=ap0,k=nml;k--; ap+=m)
*ap *= scale;
}
}
anorm=MAX(anorm,(fabs(wmat[i])+fabs(rv1[i])));
}
for (i=n-1;i>=0;i--)
{
if (i < n-1)
{
if (g)
{
ap0 = a+l*m+i;
vp0 = vmat+i*n+l;
vp10 = vmat+l*n+l;
g *= *ap0;
for (ap=ap0,vp=vp0,j=nml; j--; ap+=m)
*(vp++) = *ap/g;
for (j=nml; j--; vp10+=n)
{
for (s=0.0,ap=ap0,vp1=vp10,k=nml; k--; ap+=m)
s += *ap**(vp1++);
for (vp=vp0,vp1=vp10,k=nml; k--;)
*(vp1++) += s**(vp++);
}
}
vp = vmat+l*n+i;
vp1 = vmat+i*n+l;
for (j=nml; j--; vp+=n)
*vp = *(vp1++) = 0.0;
}
vmat[i*n+i]=1.0;
g=rv1[i];
l=i;
nml = n-l;
}
for (i=(m<n?m:n); --i>=0;)
{
l=i+1;
nml = n-l;
mmi=m-i;
g=wmat[i];
ap0 = a+i*m+i;
ap10 = ap0 + m;
for (ap=ap10,j=nml;j--;ap+=m)
*ap=0.0;
if (g)
{
g=1.0/g;
for (j=nml;j--; ap10+=m)
{
for (s=0.0,ap=ap0,ap1=ap10,k=mmi; --k;)
s += *(++ap)**(++ap1);
f = (s/(*ap0))*g;
for (ap=ap0,ap1=ap10,k=mmi;k--;)
*(ap1++) += f**(ap++);
}
for (ap=ap0,j=mmi;j--;)
*(ap++) *= g;
}
else
for (ap=ap0,j=mmi;j--;)
*(ap++)=0.0;
++(*ap0);
}
for (k=n; --k>=0;)
{
for (its=0;its<100;its++)
{
flag=1;
for (l=k;l>=0;l--)
{
nm=l-1;
if (fabs(rv1[l])+anorm == anorm)
{
flag=0;
break;
}
if (fabs(wmat[nm])+anorm == anorm)
break;
}
if (flag)
{
c=0.0;
s=1.0;
ap0 = a+nm*m;
ap10 = a+l*m;
for (i=l; i<=k; i++,ap10+=m)
{
f=s*rv1[i];
if (fabs(f)+anorm == anorm)
break;
g=wmat[i];
h=PYTHAG(f,g);
wmat[i]=h;
h=1.0/h;
c=g*h;
s=(-f*h);
for (ap=ap0,ap1=ap10,j=m; j--;)
{
z = *ap1;
y = *ap;
*(ap++) = y*c+z*s;
*(ap1++) = z*c-y*s;
}
}
}
z=wmat[k];
if (l == k)
{
if (z < 0.0)
{
wmat[k] = -z;
vp = vmat+k*n;
for (j=n; j--; vp++)
*vp = (-*vp);
}
break;
}
if (its == 99)
qerror("*Error*: No convergence in 100 SVD iterations ",
"in svdfit()");
x=wmat[l];
nm=k-1;
y=wmat[nm];
g=rv1[nm];
h=rv1[k];
f=((y-z)*(y+z)+(g-h)*(g+h))/(2.0*h*y);
g=PYTHAG(f,1.0);
f=((x-z)*(x+z)+h*((y/(f+SIGN(g,f)))-h))/x;
c=s=1.0;
ap10 = a+l*m;
vp10 = vmat+l*n;
for (j=l;j<=nm;j++,ap10+=m,vp10+=n)
{
i=j+1;
g=rv1[i];
y=wmat[i];
h=s*g;
g=c*g;
z=PYTHAG(f,h);
rv1[j]=z;
c=f/z;
s=h/z;
f=x*c+g*s;
g=g*c-x*s;
h=y*s;
y=y*c;
for (vp=(vp1=vp10)+n,jj=n; jj--;)
{
z = *vp;
x = *vp1;
*(vp1++) = x*c+z*s;
*(vp++) = z*c-x*s;
}
z=PYTHAG(f,h);
wmat[j]=z;
if (z)
{
z=1.0/z;
c=f*z;
s=h*z;
}
f=c*g+s*y;
x=c*y-s*g;
for (ap=(ap1=ap10)+m,jj=m; jj--;)
{
z = *ap;
y = *ap1;
*(ap1++) = y*c+z*s;
*(ap++) = z*c-y*s;
}
}
rv1[l]=0.0;
rv1[k]=f;
wmat[k]=x;
}
}
wmax=0.0;
w = wmat;
for (j=n;j--; w++)
if (*w > wmax)
wmax=*w;
thresh=TOL*wmax;
w = wmat;
for (j=n;j--; w++)
if (*w < thresh)
*w = 0.0;
w = wmat;
ap = a;
tmpp = tmp;
for (j=n; j--; w++)
{
s=0.0;
if (*w)
{
bp = b;
for (i=m; i--;)
s += *(ap++)**(bp++);
s /= *w;
}
else
ap += m;
*(tmpp++) = s;
}
vp0 = vmat;
for (j=0; j<n; j++,vp0++)
{
s=0.0;
tmpp = tmp;
for (vp=vp0,jj=n; jj--; vp+=n)
s += *vp**(tmpp++);
sol[j]=s;
}
/* Free temporary arrays */
free(tmp);
free(rv1);
return;
}
#undef SIGN
#undef MAX
#undef PYTHAG
#undef TOL
/****** poly_powers ***********************************************************
PROTO int *poly_powers(polystruct *poly)
PURPOSE Return an array of powers of polynom terms
INPUT polystruct pointer,
OUTPUT Pointer to an array of polynom powers (int *), (ncoeff*ndim numbers).
NOTES The returned pointer is mallocated.
AUTHOR E. Bertin (IAP)
VERSION 23/10/2003
***/
int *poly_powers(polystruct *poly)
{
int expo[POLY_MAXDIM+1], gexpo[POLY_MAXDIM+1];
int *expot, *degree,*degreet, *group,*groupt, *gexpot,
*powers, *powerst,
d,g,t, ndim;
/* Prepare the vectors and counters */
ndim = poly->ndim;
group = poly->group;
degree = poly->degree;
QMALLOC(powers, int, ndim*poly->ncoeff);
if (ndim)
{
for (expot=expo, d=ndim; --d;)
*(++expot) = 0;
for (gexpot=gexpo, degreet=degree, g=poly->ngroup; g--;)
*(gexpot++) = *(degreet++);
if (gexpo[*group])
gexpo[*group]--;
}
/* The constant term is handled separately */
powerst = powers;
for (d=0; d<ndim; d++)
*(powerst++) = 0;
*expo = 1;
/* Compute the rest of the polynom */
for (t=poly->ncoeff; --t; )
{
for (d=0; d<ndim; d++)
*(powerst++) = expo[d];
/*-- A complex recursion between terms of the polynom speeds up computations */
groupt = group;
expot = expo;
for (d=0; d<ndim; d++, groupt++)
if (gexpo[*groupt]--)
{
++*(expot++);
break;
}
else
{
gexpo[*groupt] = *expot;
*(expot++) = 0;
}
}
return powers;
}
/*
* Jun 24 2016 qerror() abort rather than exit (from Ole Streicher)
*/
|