1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
|
/*** File wcslib/zpxpos.c
*** October 31, 2012
*** By Frank Valdes, valdes@noao.edu
*** Modified from tnxpos.c by Jessica Mink, jmink@cfa.harvard.edu
*** Harvard-Smithsonian Center for Astrophysics
*** After IRAF mwcs/wfzpx.x
*** Copyright (C) 1998-2012
*** Smithsonian Astrophysical Observatory, Cambridge, MA, USA
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Correspondence concerning WCSTools should be addressed as follows:
Internet email: jmink@cfa.harvard.edu
Postal address: Jessica Mink
Smithsonian Astrophysical Observatory
60 Garden St.
Cambridge, MA 02138 USA
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "wcs.h"
#define TOL 1e-13
#define SPHTOL 0.00001
#define BADCVAL 0.0
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
/* wfzpx -- wcs function driver for the zenithal / azimuthal polynomial.
* zpxinit (header, wcs)
* zpxclose (wcs)
* zpxfwd (xpix, ypix, wcs, xpos, ypos) Pixels to WCS
* zpxrev (xpos, ypos, wcs, xpix, ypix) WCS to pixels
*/
#define max_niter 500
#define SZ_ATSTRING 2000
static void wf_gsclose();
/* zpxinit -- initialize the zenithal/azimuthal polynomial forward or
* inverse transform. initialization for this transformation consists of,
* determining which axis is ra / lon and which is dec / lat, computing the
* celestial longitude and colatitude of the native pole, reading in the the
* native longitude of the pole of the celestial coordinate system longpole
* from the attribute list, precomputing the euler angles and various
* intermediary functions of the reference coordinates, reading in the
* projection parameter ro from the attribute list, reading in up to ten
* polynomial coefficients, and, for polynomial orders greater than 2 computing
* the colatitude and radius of the first point of inflection. if longpole is
* undefined then a value of 180.0 degrees is assumed. if ro is undefined a
* value of 180.0 / pi is assumed. if the polynomial coefficients are all zero
* then an error condition is posted. if the order of the polynomial is 2 or
* greater and there is no point of inflection an error condition is posted.
* the zpx projection with an order of 1 and 0th and 1st coefficients of 0.0
* and 1.0 respectively is equivalent to the arc projtection. in order to
* determine the axis order, the parameter "axtype={ra|dec} {xlon|xlat}" must
* have been set in the attribute list for the function. the longpole and ro
* parameters may be set in either or both of the axes attribute lists, but the
* value in the ra axis attribute list takes precedence.
*/
int
zpxinit (header, wcs)
const char *header; /* FITS header */
struct WorldCoor *wcs; /* pointer to WCS structure */
{
int i, j;
struct IRAFsurface *wf_gsopen();
char key[8], *str1, *str2, *lngstr, *latstr, *header1;
double zd1, d1, zd2,d2, zd, d, r;
extern void wcsrotset();
/* allocate space for the attribute strings */
str1 = malloc (SZ_ATSTRING);
str2 = malloc (SZ_ATSTRING);
if (!hgetm (header, "WAT1", SZ_ATSTRING, str1)) {
/* this is a kludge to handle NOAO archived data where the first
* WAT cards are in the primary header and this code does not
* implement the inheritance convention. since zpx is largely an
* NOAO system and it doesn't make sense for WAT1 to be missing if
* ctype is ZPX, this block is only triggered with this kludge.
* there had to be a few changes to defeat the caching of the
* index of the header string so that the added cards are also
* found.
*/
header1 = malloc (strlen(header)+200);
strcpy (header1, "WAT1_001= 'wtype=zpx axtype=ra projp0=0. projp1=1. projp2=0. projp3=337.74 proj'WAT2_001= 'wtype=zpx axtype=dec projp0=0. projp1=1. projp2=0. projp3=337.74 pro'");
strcat (header1, header);
hgetm (header1, "WAT1", SZ_ATSTRING, str1);
hgetm (header1, "WAT2", SZ_ATSTRING, str2);
free (header1);
}
hgetm (header, "WAT2", SZ_ATSTRING, str2);
lngstr = malloc (SZ_ATSTRING);
latstr = malloc (SZ_ATSTRING);
/* determine the native longitude of the pole of the celestial
coordinate system corresponding to the FITS keyword longpole.
this number has no default and should normally be set to 180
degrees. search both axes for this quantity. */
if (wcs->longpole > 360.0) {
if (!igetr8 (str1, "longpole", &wcs->longpole)) {
if (!igetr8 (str2, "longpole", &wcs->longpole))
wcs->longpole = 180.0;
}
}
/* Fetch the ro projection parameter which is the radius of the
generating sphere for the projection. if ro is absent which
is the usual case set it to 180 / pi. search both axes for
this quantity. */
if (!igetr8 (str1, "ro", &wcs->rodeg)) {
if (!igetr8 (str2, "ro", &wcs->rodeg))
wcs->rodeg = 180.0 / PI;
}
/* Fetch the zenithal polynomial coefficients. */
for (i = 0; i < 10; i++) {
sprintf (key,"projp%d",i);
if (!igetr8 (str1, key, &wcs->prj.p[i]))
wcs->prj.p[i] = 0.0;
}
/* Fetch the longitude correction surface. note that the attribute
string may be of any length so the length of atvalue may have
to be adjusted. */
if (!igets (str1, "lngcor", SZ_ATSTRING, lngstr)) {
if (!igets (str2, "lngcor", SZ_ATSTRING, lngstr))
wcs->lngcor = NULL;
else
wcs->lngcor = wf_gsopen (lngstr);
}
else
wcs->lngcor = wf_gsopen (lngstr);
/* Fetch the latitude correction surface. note that the attribute
string may be of any length so the length of atvalue may have
to be adjusted. */
if (!igets (str2, "latcor", SZ_ATSTRING, latstr)) {
if (!igets (str1, "latcor", SZ_ATSTRING, latstr))
wcs->latcor = NULL;
else
wcs->latcor = wf_gsopen (latstr);
}
else
wcs->latcor = wf_gsopen (latstr);
/* Determine the number of ZP coefficients */
for (i = 9; i >= 0 && wcs->prj.p[i] == 0.; i--);
wcs->zpnp = i;
if (i >= 3) {
/* Find the point of inflection closest to the pole. */
zd1 = 0.;
d1 = wcs->prj.p[1];
/* Find the point where the derivative first goes negative. */
for (i = 1; i<= 180; i++) {
zd2 = PI * i / 180.0;
d2 = 0.;
for (j = wcs->zpnp; j >= 1; j--) {
d2 = d2 * zd2 + j * wcs->prj.p[j];
}
if (d2 <= 0.)
break;
zd1 = zd2;
d1 = d2;
}
/* Find where the derivative is 0. */
if (d2 <= 0.0) {
for (i = 1; i <= 10; i++) {
zd = zd1 - d1 * (zd2 - zd1) / (d2 - d1);
d = 0.;
for (j = wcs->zpnp; j >= 1; j--) {
d = d * zd + j * wcs->prj.p[j];
}
if (fabs(d) < TOL)
break;
if (d < 0.) {
zd2 = zd;
d2 = d;
}
else {
zd1 = zd;
d1 = d;
}
}
}
/* No negative derivative. */
else
zd = PI;
r = 0.;
for (j = wcs->zpnp; j >= 0; j--)
r = r * zd + wcs->prj.p[j];
wcs->zpzd = zd;
wcs->zpr = r;
}
/* Compute image rotation */
wcsrotset (wcs);
/* free working space. */
free (str1);
free (str2);
free (lngstr);
free (latstr);
/* Return 1 if there are no correction coefficients */
if (wcs->latcor == NULL && wcs->lngcor == NULL)
return (1);
else
return (0);
}
/* zpxpos -- forward transform (physical to world) gnomonic projection. */
int
zpxpos (xpix, ypix, wcs, xpos, ypos)
double xpix, ypix; /*i physical coordinates (x, y) */
struct WorldCoor *wcs; /*i pointer to WCS descriptor */
double *xpos, *ypos; /*o world coordinates (ra, dec) */
{
int i, j, k, ira, idec;
double x, y, r, phi, theta, costhe, sinthe, dphi, cosphi, sinphi, dlng, z;
double colatp, coslatp, sinlatp, longp;
double xs, ys, ra, dec, xp, yp;
double a, b, c, d, zd, zd1, zd2, r1, r2, rt, lambda;
double wf_gseval();
/* Convert from pixels to image coordinates */
xpix = xpix - wcs->crpix[0];
ypix = ypix - wcs->crpix[1];
/* Scale and rotate using CD matrix */
if (wcs->rotmat) {
x = xpix * wcs->cd[0] + ypix * wcs->cd[1];
y = xpix * wcs->cd[2] + ypix * wcs->cd[3];
}
else {
/* Check axis increments - bail out if either 0 */
if (wcs->cdelt[0] == 0.0 || wcs->cdelt[1] == 0.0) {
*xpos = 0.0;
*ypos = 0.0;
return 2;
}
/* Scale using CDELT */
xs = xpix * wcs->cdelt[0];
ys = ypix * wcs->cdelt[1];
/* Take out rotation from CROTA */
if (wcs->rot != 0.0) {
double cosr = cos (degrad (wcs->rot));
double sinr = sin (degrad (wcs->rot));
x = xs * cosr - ys * sinr;
y = xs * sinr + ys * cosr;
}
else {
x = xs;
y = ys;
}
}
/* Get the axis numbers */
if (wcs->coorflip) {
ira = 1;
idec = 0;
}
else {
ira = 0;
idec = 1;
}
colatp = degrad (90.0 - wcs->crval[idec]);
coslatp = cos(colatp);
sinlatp = sin(colatp);
longp = degrad(wcs->longpole);
/* Compute native spherical coordinates phi and theta in degrees from the
projected coordinates. this is the projection part of the computation */
k = wcs->zpnp;
if (wcs->lngcor != NULL)
xp = x + wf_gseval (wcs->lngcor, x, y);
else
xp = x;
if (wcs->latcor != NULL)
yp = y + wf_gseval (wcs->latcor, x, y);
else
yp = y;
x = xp;
y = yp;
r = sqrt (x * x + y * y) / wcs->rodeg;
/* Solve */
/* Constant no solution */
if (k < 1) {
*xpos = BADCVAL;
*ypos = BADCVAL;
return (1);
}
/* Linear */
else if (k == 1) {
zd = (r - wcs->prj.p[0]) / wcs->prj.p[1];
}
/* Quadratic */
else if (k == 2) {
a = wcs->prj.p[2];
b = wcs->prj.p[1];
c = wcs->prj.p[0] - r;
d = b * b - 4. * a * c;
if (d < 0.) {
*xpos = BADCVAL;
*ypos = BADCVAL;
return (1);
}
d = sqrt (d);
/* Choose solution closest to the pole */
zd1 = (-b + d) / (2. * a);
zd2 = (-b - d) / (2. * a);
if (zd1 < zd2)
zd = zd1;
else
zd = zd2;
if (zd < -TOL) {
if (zd1 > zd2)
zd = zd1;
else
zd = zd2;
}
if (zd < 0.) {
if (zd < -TOL) {
*xpos = BADCVAL;
*ypos = BADCVAL;
return (1);
}
zd = 0.;
}
else if (zd > PI) {
if (zd > (PI + TOL)) {
*xpos = BADCVAL;
*ypos = BADCVAL;
return (1);
}
zd = PI;
}
}
/* Higher order solve iteratively */
else {
zd1 = 0.;
r1 = wcs->prj.p[0];
zd2 = wcs->zpzd;
r2 = wcs->zpr;
if (r < r1) {
if (r < (r1 - TOL)) {
*xpos = BADCVAL;
*ypos = BADCVAL;
return (1);
}
zd = zd1;
}
else if (r > r2) {
if (r > (r2 + TOL)) {
*xpos = BADCVAL;
*ypos = BADCVAL;
return (1);
}
zd = zd2;
}
else {
for (j=0; j<100; j++) {
lambda = (r2 - r) / (r2 - r1);
if (lambda < 0.1)
lambda = 0.1;
else if (lambda > 0.9)
lambda = 0.9;
zd = zd2 - lambda * (zd2 - zd1);
rt = 0.;
for (i=k; i>=0; i--)
rt = (rt * zd) + wcs->prj.p[i];
if (rt < r) {
if ((r - rt) < TOL)
break;
r1 = rt;
zd1 = zd;
}
else {
if ((rt - r) < TOL)
break;
r2 = rt;
zd2 = zd;
}
lambda = zd2 - zd1;
lambda = fabs (zd2 - zd1);
if (fabs (zd2 - zd1) < TOL)
break;
}
}
}
/* Compute phi */
if (r == 0.0)
phi = 0.0;
else
phi = atan2 (x, -y);
/* Compute theta */
theta = PI / 2 - zd;
/* Compute the celestial coordinates ra and dec from the native
coordinates phi and theta. this is the spherical geometry part
of the computation */
costhe = cos (theta);
sinthe = sin (theta);
dphi = phi - longp;
cosphi = cos (dphi);
sinphi = sin (dphi);
/* Compute the ra */
x = sinthe * sinlatp - costhe * coslatp * cosphi;
if (fabs (x) < SPHTOL)
x = -cos (theta + colatp) + costhe * coslatp * (1.0 - cosphi);
y = -costhe * sinphi;
if (x != 0.0 || y != 0.0)
dlng = atan2 (y, x);
else
dlng = dphi + PI ;
ra = wcs->crval[ira] + raddeg(dlng);
/* normalize ra */
if (wcs->crval[ira] >= 0.0) {
if (ra < 0.0)
ra = ra + 360.0;
}
else {
if (ra > 0.0)
ra = ra - 360.0;
}
if (ra > 360.0)
ra = ra - 360.0;
else if (ra < -360.0)
ra = ra + 360.0;
/* compute the dec */
if (fmod (dphi, PI) == 0.0) {
dec = raddeg(theta + cosphi * colatp);
if (dec > 90.0)
dec = 180.0 - dec;
if (dec < -90.0)
dec = -180.0 - dec;
}
else {
z = sinthe * coslatp + costhe * sinlatp * cosphi;
if (fabs(z) > 0.99) {
if (z >= 0.0)
dec = raddeg(acos (sqrt(x * x + y * y)));
else
dec = raddeg(-acos (sqrt(x * x + y * y)));
}
else
dec = raddeg(asin (z));
}
/* store the results */
*xpos = ra;
*ypos = dec;
return (0);
}
/* zpxpix -- inverse transform (world to physical) for the zenithal
* azimuthal polynomial projection.
*/
int
zpxpix (xpos, ypos, wcs, xpix, ypix)
double xpos, ypos; /*i world coordinates (ra, dec) */
struct WorldCoor *wcs; /*i pointer to WCS descriptor */
double *xpix, *ypix; /*o physical coordinates (x, y) */
{
int i, ira, idec, niter;
double ra, dec, cosdec, sindec, cosra, sinra, x, y, phi, theta;
double s, r, dphi, z, dpi, dhalfpi, twopi, tx;
double xm, ym, f, fx, fy, g, gx, gy, denom, dx, dy;
double colatp, coslatp, sinlatp, longp, sphtol;
double wf_gseval(), wf_gsder();
/* get the axis numbers */
if (wcs->coorflip) {
ira = 1;
idec = 0;
}
else {
ira = 0;
idec = 1;
}
/* Compute the transformation from celestial coordinates ra and
dec to native coordinates phi and theta. this is the spherical
geometry part of the transformation */
ra = degrad (xpos - wcs->crval[ira]);
dec = degrad (ypos);
cosra = cos (ra);
sinra = sin (ra);
cosdec = cos (dec);
sindec = sin (dec);
colatp = degrad (90.0 - wcs->crval[idec]);
coslatp = cos (colatp);
sinlatp = sin (colatp);
if (wcs->longpole == 999.0)
longp = degrad (180.0);
else
longp = degrad(wcs->longpole);
dpi = PI;
dhalfpi = dpi * 0.5;
twopi = PI + PI;
sphtol = SPHTOL;
/* Compute phi */
x = sindec * sinlatp - cosdec * coslatp * cosra;
if (fabs(x) < sphtol)
x = -cos (dec + colatp) + cosdec * coslatp * (1.0 - cosra);
y = -cosdec * sinra;
if (x != 0.0 || y != 0.0)
dphi = atan2 (y, x);
else
dphi = ra - dpi;
phi = longp + dphi;
if (phi > dpi)
phi = phi - twopi;
else if (phi < -dpi)
phi = phi + twopi;
/* Compute theta */
if (fmod (ra, dpi) == 0.0) {
theta = dec + cosra * colatp;
if (theta > dhalfpi)
theta = dpi - theta;
if (theta < -dhalfpi)
theta = -dpi - theta;
}
else {
z = sindec * coslatp + cosdec * sinlatp * cosra;
if (fabs (z) > 0.99) {
if (z >= 0.0)
theta = acos (sqrt(x * x + y * y));
else
theta = -acos (sqrt(x * x + y * y));
}
else
theta = asin (z);
}
/* Compute the transformation from native coordinates phi and theta
to projected coordinates x and y */
s = dhalfpi - theta;
r = 0.;
for (i=9; i>=0; i--)
r = r * s + wcs->prj.p[i];
r = wcs->rodeg * r;
if (wcs->lngcor == NULL && wcs->latcor == NULL) {
if (wcs->coorflip) {
y = r * sin (phi);
x = -r * cos (phi);
} else {
x = r * sin (phi);
y = -r * cos (phi);
}
} else {
xm = r * sin (phi);
ym = -r * cos (phi);
x = xm;
y = ym;
niter = 0;
while (niter < max_niter) {
if (wcs->lngcor != NULL) {
f = x + wf_gseval (wcs->lngcor, x, y) - xm;
fx = wf_gsder (wcs->lngcor, x, y, 1, 0);
fx = 1.0 + fx;
fy = wf_gsder (wcs->lngcor, x, y, 0, 1);
}
else {
f = x - xm;
fx = 1.0 ;
fy = 0.0;
}
if (wcs->latcor != NULL) {
g = y + wf_gseval (wcs->latcor, x, y) - ym;
gx = wf_gsder (wcs->latcor, x, y, 1, 0);
gy = wf_gsder (wcs->latcor, x, y, 0, 1);
gy = 1.0 + gy;
}
else {
g = y - ym;
gx = 0.0 ;
gy = 1.0;
}
denom = fx * gy - fy * gx;
if (denom == 0.0)
break;
dx = (-f * gy + g * fy) / denom;
dy = (-g * fx + f * gx) / denom;
x = x + dx;
y = y + dy;
if (MAX(MAX(fabs(dx),fabs(dy)),MAX(fabs(f),fabs(g))) < 2.80e-8)
break;
niter = niter + 1;
}
/* Reverse x and y if axes flipped */
if (wcs->coorflip) {
tx = x;
x = y;
y = tx;
}
}
/* Scale and rotate using CD matrix */
if (wcs->rotmat) {
*xpix = x * wcs->dc[0] + y * wcs->dc[1];
*ypix = x * wcs->dc[2] + y * wcs->dc[3];
}
else {
/* Correct for rotation */
if (wcs->rot!=0.0) {
double cosr = cos (degrad (wcs->rot));
double sinr = sin (degrad (wcs->rot));
*xpix = x * cosr + y * sinr;
*ypix = y * cosr - x * sinr;
}
else {
*xpix = x;
*ypix = y;
}
/* Scale using CDELT */
if (wcs->xinc != 0.)
*xpix = *xpix / wcs->xinc;
if (wcs->yinc != 0.)
*ypix = *ypix / wcs->yinc;
}
/* Convert to pixels */
*xpix = *xpix + wcs->xrefpix;
*ypix = *ypix + wcs->yrefpix;
return (0);
}
/* ZPXCLOSE -- free up the distortion surface pointers */
void
zpxclose (wcs)
struct WorldCoor *wcs; /* pointer to the WCS descriptor */
{
if (wcs->lngcor != NULL)
wf_gsclose (wcs->lngcor);
if (wcs->latcor != NULL)
wf_gsclose (wcs->latcor);
return;
}
/* wf_gsclose -- procedure to free the surface descriptor */
static void
wf_gsclose (sf)
struct IRAFsurface *sf; /* the surface descriptor */
{
if (sf != NULL) {
if (sf->xbasis != NULL)
free (sf->xbasis);
if (sf->ybasis != NULL)
free (sf->ybasis);
if (sf->coeff != NULL)
free (sf->coeff);
free (sf);
}
return;
}
/*
* Mar 8 2011 Created from tnxpos.c and wfzpx.x
*
* Oct 31 2012 End comment on line 346 after pole; fix code thereafter
*/
|