1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728
|
/*
* Copyright (C) 2009 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "RegexCompiler.h"
#include "RegexInterpreter.h"
#include "RegexPattern.h"
#include <wtf/Vector.h>
#if ENABLE(YARR)
using namespace WTF;
namespace JSC { namespace Yarr {
class CharacterClassConstructor {
public:
CharacterClassConstructor(bool isCaseInsensitive = false)
: m_isCaseInsensitive(isCaseInsensitive)
{
}
void reset()
{
m_matches.clear();
m_ranges.clear();
m_matchesUnicode.clear();
m_rangesUnicode.clear();
}
void append(const CharacterClass* other)
{
for (size_t i = 0; i < other->m_matches.size(); ++i)
addSorted(m_matches, other->m_matches[i]);
for (size_t i = 0; i < other->m_ranges.size(); ++i)
addSortedRange(m_ranges, other->m_ranges[i].begin, other->m_ranges[i].end);
for (size_t i = 0; i < other->m_matchesUnicode.size(); ++i)
addSorted(m_matchesUnicode, other->m_matchesUnicode[i]);
for (size_t i = 0; i < other->m_rangesUnicode.size(); ++i)
addSortedRange(m_rangesUnicode, other->m_rangesUnicode[i].begin, other->m_rangesUnicode[i].end);
}
void putChar(UChar ch)
{
if (ch <= 0x7f) {
if (m_isCaseInsensitive && isASCIIAlpha(ch)) {
addSorted(m_matches, toASCIIUpper(ch));
addSorted(m_matches, toASCIILower(ch));
} else
addSorted(m_matches, ch);
} else {
UChar upper, lower;
if (m_isCaseInsensitive && ((upper = Unicode::toUpper(ch)) != (lower = Unicode::toLower(ch)))) {
addSorted(m_matchesUnicode, upper);
addSorted(m_matchesUnicode, lower);
} else
addSorted(m_matchesUnicode, ch);
}
}
// returns true if this character has another case, and 'ch' is the upper case form.
static inline bool isUnicodeUpper(UChar ch)
{
return ch != Unicode::toLower(ch);
}
// returns true if this character has another case, and 'ch' is the lower case form.
static inline bool isUnicodeLower(UChar ch)
{
return ch != Unicode::toUpper(ch);
}
void putRange(UChar lo, UChar hi)
{
if (lo <= 0x7f) {
char asciiLo = lo;
char asciiHi = std::min(hi, (UChar)0x7f);
addSortedRange(m_ranges, lo, asciiHi);
if (m_isCaseInsensitive) {
if ((asciiLo <= 'Z') && (asciiHi >= 'A'))
addSortedRange(m_ranges, std::max(asciiLo, 'A')+('a'-'A'), std::min(asciiHi, 'Z')+('a'-'A'));
if ((asciiLo <= 'z') && (asciiHi >= 'a'))
addSortedRange(m_ranges, std::max(asciiLo, 'a')+('A'-'a'), std::min(asciiHi, 'z')+('A'-'a'));
}
}
if (hi >= 0x80) {
uint32_t unicodeCurr = std::max(lo, (UChar)0x80);
addSortedRange(m_rangesUnicode, unicodeCurr, hi);
if (m_isCaseInsensitive) {
while (unicodeCurr <= hi) {
// If the upper bound of the range (hi) is 0xffff, the increments to
// unicodeCurr in this loop may take it to 0x10000. This is fine
// (if so we won't re-enter the loop, since the loop condition above
// will definitely fail) - but this does mean we cannot use a UChar
// to represent unicodeCurr, we must use a 32-bit value instead.
ASSERT(unicodeCurr <= 0xffff);
if (isUnicodeUpper(unicodeCurr)) {
UChar lowerCaseRangeBegin = Unicode::toLower(unicodeCurr);
UChar lowerCaseRangeEnd = lowerCaseRangeBegin;
while ((++unicodeCurr <= hi) && isUnicodeUpper(unicodeCurr) && (Unicode::toLower(unicodeCurr) == (lowerCaseRangeEnd + 1)))
lowerCaseRangeEnd++;
addSortedRange(m_rangesUnicode, lowerCaseRangeBegin, lowerCaseRangeEnd);
} else if (isUnicodeLower(unicodeCurr)) {
UChar upperCaseRangeBegin = Unicode::toUpper(unicodeCurr);
UChar upperCaseRangeEnd = upperCaseRangeBegin;
while ((++unicodeCurr <= hi) && isUnicodeLower(unicodeCurr) && (Unicode::toUpper(unicodeCurr) == (upperCaseRangeEnd + 1)))
upperCaseRangeEnd++;
addSortedRange(m_rangesUnicode, upperCaseRangeBegin, upperCaseRangeEnd);
} else
++unicodeCurr;
}
}
}
}
CharacterClass* charClass()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_matches.append(m_matches);
characterClass->m_ranges.append(m_ranges);
characterClass->m_matchesUnicode.append(m_matchesUnicode);
characterClass->m_rangesUnicode.append(m_rangesUnicode);
reset();
return characterClass;
}
private:
void addSorted(Vector<UChar>& matches, UChar ch)
{
unsigned pos = 0;
unsigned range = matches.size();
// binary chop, find position to insert char.
while (range) {
unsigned index = range >> 1;
int val = matches[pos+index] - ch;
if (!val)
return;
else if (val > 0)
range = index;
else {
pos += (index+1);
range -= (index+1);
}
}
if (pos == matches.size())
matches.append(ch);
else
matches.insert(pos, ch);
}
void addSortedRange(Vector<CharacterRange>& ranges, UChar lo, UChar hi)
{
unsigned end = ranges.size();
// Simple linear scan - I doubt there are that many ranges anyway...
// feel free to fix this with something faster (eg binary chop).
for (unsigned i = 0; i < end; ++i) {
// does the new range fall before the current position in the array
if (hi < ranges[i].begin) {
// optional optimization: concatenate appending ranges? - may not be worthwhile.
if (hi == (ranges[i].begin - 1)) {
ranges[i].begin = lo;
return;
}
ranges.insert(i, CharacterRange(lo, hi));
return;
}
// Okay, since we didn't hit the last case, the end of the new range is definitely at or after the begining
// If the new range start at or before the end of the last range, then the overlap (if it starts one after the
// end of the last range they concatenate, which is just as good.
if (lo <= (ranges[i].end + 1)) {
// found an intersect! we'll replace this entry in the array.
ranges[i].begin = std::min(ranges[i].begin, lo);
ranges[i].end = std::max(ranges[i].end, hi);
// now check if the new range can subsume any subsequent ranges.
unsigned next = i+1;
// each iteration of the loop we will either remove something from the list, or break the loop.
while (next < ranges.size()) {
if (ranges[next].begin <= (ranges[i].end + 1)) {
// the next entry now overlaps / concatenates this one.
ranges[i].end = std::max(ranges[i].end, ranges[next].end);
ranges.remove(next);
} else
break;
}
return;
}
}
// CharacterRange comes after all existing ranges.
ranges.append(CharacterRange(lo, hi));
}
bool m_isCaseInsensitive;
Vector<UChar> m_matches;
Vector<CharacterRange> m_ranges;
Vector<UChar> m_matchesUnicode;
Vector<CharacterRange> m_rangesUnicode;
};
CharacterClass* newlineCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_matches.append('\n');
characterClass->m_matches.append('\r');
characterClass->m_matchesUnicode.append(0x2028);
characterClass->m_matchesUnicode.append(0x2029);
return characterClass;
}
CharacterClass* digitsCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_ranges.append(CharacterRange('0', '9'));
return characterClass;
}
CharacterClass* spacesCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_matches.append(' ');
characterClass->m_ranges.append(CharacterRange('\t', '\r'));
characterClass->m_matchesUnicode.append(0x00a0);
characterClass->m_matchesUnicode.append(0x1680);
characterClass->m_matchesUnicode.append(0x180e);
characterClass->m_matchesUnicode.append(0x2028);
characterClass->m_matchesUnicode.append(0x2029);
characterClass->m_matchesUnicode.append(0x202f);
characterClass->m_matchesUnicode.append(0x205f);
characterClass->m_matchesUnicode.append(0x3000);
characterClass->m_rangesUnicode.append(CharacterRange(0x2000, 0x200a));
return characterClass;
}
CharacterClass* wordcharCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_matches.append('_');
characterClass->m_ranges.append(CharacterRange('0', '9'));
characterClass->m_ranges.append(CharacterRange('A', 'Z'));
characterClass->m_ranges.append(CharacterRange('a', 'z'));
return characterClass;
}
CharacterClass* nondigitsCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_ranges.append(CharacterRange(0, '0' - 1));
characterClass->m_ranges.append(CharacterRange('9' + 1, 0x7f));
characterClass->m_rangesUnicode.append(CharacterRange(0x80, 0xffff));
return characterClass;
}
CharacterClass* nonspacesCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_ranges.append(CharacterRange(0, '\t' - 1));
characterClass->m_ranges.append(CharacterRange('\r' + 1, ' ' - 1));
characterClass->m_ranges.append(CharacterRange(' ' + 1, 0x7f));
characterClass->m_rangesUnicode.append(CharacterRange(0x0080, 0x009f));
characterClass->m_rangesUnicode.append(CharacterRange(0x00a1, 0x167f));
characterClass->m_rangesUnicode.append(CharacterRange(0x1681, 0x180d));
characterClass->m_rangesUnicode.append(CharacterRange(0x180f, 0x1fff));
characterClass->m_rangesUnicode.append(CharacterRange(0x200b, 0x2027));
characterClass->m_rangesUnicode.append(CharacterRange(0x202a, 0x202e));
characterClass->m_rangesUnicode.append(CharacterRange(0x2030, 0x205e));
characterClass->m_rangesUnicode.append(CharacterRange(0x2060, 0x2fff));
characterClass->m_rangesUnicode.append(CharacterRange(0x3001, 0xffff));
return characterClass;
}
CharacterClass* nonwordcharCreate()
{
CharacterClass* characterClass = new CharacterClass();
characterClass->m_matches.append('`');
characterClass->m_ranges.append(CharacterRange(0, '0' - 1));
characterClass->m_ranges.append(CharacterRange('9' + 1, 'A' - 1));
characterClass->m_ranges.append(CharacterRange('Z' + 1, '_' - 1));
characterClass->m_ranges.append(CharacterRange('z' + 1, 0x7f));
characterClass->m_rangesUnicode.append(CharacterRange(0x80, 0xffff));
return characterClass;
}
class RegexPatternConstructor {
public:
RegexPatternConstructor(RegexPattern& pattern)
: m_pattern(pattern)
, m_characterClassConstructor(pattern.m_ignoreCase)
{
}
~RegexPatternConstructor()
{
}
void reset()
{
m_pattern.reset();
m_characterClassConstructor.reset();
}
void assertionBOL()
{
m_alternative->m_terms.append(PatternTerm::BOL());
}
void assertionEOL()
{
m_alternative->m_terms.append(PatternTerm::EOL());
}
void assertionWordBoundary(bool invert)
{
m_alternative->m_terms.append(PatternTerm::WordBoundary(invert));
}
void atomPatternCharacter(UChar ch)
{
// We handle case-insensitive checking of unicode characters which do have both
// cases by handling them as if they were defined using a CharacterClass.
if (m_pattern.m_ignoreCase && !isASCII(ch) && (Unicode::toUpper(ch) != Unicode::toLower(ch))) {
atomCharacterClassBegin();
atomCharacterClassAtom(ch);
atomCharacterClassEnd();
} else
m_alternative->m_terms.append(PatternTerm(ch));
}
void atomBuiltInCharacterClass(BuiltInCharacterClassID classID, bool invert)
{
switch (classID) {
case DigitClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.digitsCharacterClass(), invert));
break;
case SpaceClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.spacesCharacterClass(), invert));
break;
case WordClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.wordcharCharacterClass(), invert));
break;
case NewlineClassID:
m_alternative->m_terms.append(PatternTerm(m_pattern.newlineCharacterClass(), invert));
break;
}
}
void atomCharacterClassBegin(bool invert = false)
{
m_invertCharacterClass = invert;
}
void atomCharacterClassAtom(UChar ch)
{
m_characterClassConstructor.putChar(ch);
}
void atomCharacterClassRange(UChar begin, UChar end)
{
m_characterClassConstructor.putRange(begin, end);
}
void atomCharacterClassBuiltIn(BuiltInCharacterClassID classID, bool invert)
{
ASSERT(classID != NewlineClassID);
switch (classID) {
case DigitClassID:
m_characterClassConstructor.append(invert ? m_pattern.nondigitsCharacterClass() : m_pattern.digitsCharacterClass());
break;
case SpaceClassID:
m_characterClassConstructor.append(invert ? m_pattern.nonspacesCharacterClass() : m_pattern.spacesCharacterClass());
break;
case WordClassID:
m_characterClassConstructor.append(invert ? m_pattern.nonwordcharCharacterClass() : m_pattern.wordcharCharacterClass());
break;
default:
ASSERT_NOT_REACHED();
}
}
void atomCharacterClassEnd()
{
CharacterClass* newCharacterClass = m_characterClassConstructor.charClass();
m_pattern.m_userCharacterClasses.append(newCharacterClass);
m_alternative->m_terms.append(PatternTerm(newCharacterClass, m_invertCharacterClass));
}
void atomParenthesesSubpatternBegin(bool capture = true)
{
unsigned subpatternId = m_pattern.m_numSubpatterns + 1;
if (capture)
m_pattern.m_numSubpatterns++;
PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative);
m_pattern.m_disjunctions.append(parenthesesDisjunction);
m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParenthesesSubpattern, subpatternId, parenthesesDisjunction, capture));
m_alternative = parenthesesDisjunction->addNewAlternative();
}
void atomParentheticalAssertionBegin(bool invert = false)
{
PatternDisjunction* parenthesesDisjunction = new PatternDisjunction(m_alternative);
m_pattern.m_disjunctions.append(parenthesesDisjunction);
m_alternative->m_terms.append(PatternTerm(PatternTerm::TypeParentheticalAssertion, m_pattern.m_numSubpatterns + 1, parenthesesDisjunction, invert));
m_alternative = parenthesesDisjunction->addNewAlternative();
}
void atomParenthesesEnd()
{
ASSERT(m_alternative->m_parent);
ASSERT(m_alternative->m_parent->m_parent);
m_alternative = m_alternative->m_parent->m_parent;
m_alternative->lastTerm().parentheses.lastSubpatternId = m_pattern.m_numSubpatterns;
}
void atomBackReference(unsigned subpatternId)
{
ASSERT(subpatternId);
m_pattern.m_maxBackReference = std::max(m_pattern.m_maxBackReference, subpatternId);
if (subpatternId > m_pattern.m_numSubpatterns) {
m_alternative->m_terms.append(PatternTerm::ForwardReference());
return;
}
PatternAlternative* currentAlternative = m_alternative;
ASSERT(currentAlternative);
// Note to self: if we waited until the AST was baked, we could also remove forwards refs
while ((currentAlternative = currentAlternative->m_parent->m_parent)) {
PatternTerm& term = currentAlternative->lastTerm();
ASSERT((term.type == PatternTerm::TypeParenthesesSubpattern) || (term.type == PatternTerm::TypeParentheticalAssertion));
if ((term.type == PatternTerm::TypeParenthesesSubpattern) && term.invertOrCapture && (subpatternId == term.subpatternId)) {
m_alternative->m_terms.append(PatternTerm::ForwardReference());
return;
}
}
m_alternative->m_terms.append(PatternTerm(subpatternId));
}
PatternDisjunction* copyDisjunction(PatternDisjunction* disjunction)
{
PatternDisjunction* newDisjunction = new PatternDisjunction();
newDisjunction->m_parent = disjunction->m_parent;
for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
PatternAlternative* alternative = disjunction->m_alternatives[alt];
PatternAlternative* newAlternative = newDisjunction->addNewAlternative();
for (unsigned i = 0; i < alternative->m_terms.size(); ++i)
newAlternative->m_terms.append(copyTerm(alternative->m_terms[i]));
}
m_pattern.m_disjunctions.append(newDisjunction);
return newDisjunction;
}
PatternTerm copyTerm(PatternTerm& term)
{
if ((term.type != PatternTerm::TypeParenthesesSubpattern) && (term.type != PatternTerm::TypeParentheticalAssertion))
return PatternTerm(term);
PatternTerm termCopy = term;
termCopy.parentheses.disjunction = copyDisjunction(termCopy.parentheses.disjunction);
return termCopy;
}
void quantifyAtom(unsigned min, unsigned max, bool greedy)
{
ASSERT(min <= max);
ASSERT(m_alternative->m_terms.size());
if (!max) {
m_alternative->removeLastTerm();
return;
}
PatternTerm& term = m_alternative->lastTerm();
ASSERT(term.type > PatternTerm::TypeAssertionWordBoundary);
ASSERT((term.quantityCount == 1) && (term.quantityType == QuantifierFixedCount));
// For any assertion with a zero minimum, not matching is valid and has no effect,
// remove it. Otherwise, we need to match as least once, but there is no point
// matching more than once, so remove the quantifier. It is not entirely clear
// from the spec whether or not this behavior is correct, but I believe this
// matches Firefox. :-/
if (term.type == PatternTerm::TypeParentheticalAssertion) {
if (!min)
m_alternative->removeLastTerm();
return;
}
if (min == 0)
term.quantify(max, greedy ? QuantifierGreedy : QuantifierNonGreedy);
else if (min == max)
term.quantify(min, QuantifierFixedCount);
else {
term.quantify(min, QuantifierFixedCount);
m_alternative->m_terms.append(copyTerm(term));
// NOTE: this term is interesting from an analysis perspective, in that it can be ignored.....
m_alternative->lastTerm().quantify((max == UINT_MAX) ? max : max - min, greedy ? QuantifierGreedy : QuantifierNonGreedy);
if (m_alternative->lastTerm().type == PatternTerm::TypeParenthesesSubpattern)
m_alternative->lastTerm().parentheses.isCopy = true;
}
}
void disjunction()
{
m_alternative = m_alternative->m_parent->addNewAlternative();
}
void regexBegin()
{
m_pattern.m_body = new PatternDisjunction();
m_alternative = m_pattern.m_body->addNewAlternative();
m_pattern.m_disjunctions.append(m_pattern.m_body);
}
void regexEnd()
{
}
void regexError()
{
}
unsigned setupAlternativeOffsets(PatternAlternative* alternative, unsigned currentCallFrameSize, unsigned initialInputPosition)
{
alternative->m_hasFixedSize = true;
unsigned currentInputPosition = initialInputPosition;
for (unsigned i = 0; i < alternative->m_terms.size(); ++i) {
PatternTerm& term = alternative->m_terms[i];
switch (term.type) {
case PatternTerm::TypeAssertionBOL:
case PatternTerm::TypeAssertionEOL:
case PatternTerm::TypeAssertionWordBoundary:
term.inputPosition = currentInputPosition;
break;
case PatternTerm::TypeBackReference:
term.inputPosition = currentInputPosition;
term.frameLocation = currentCallFrameSize;
currentCallFrameSize += RegexStackSpaceForBackTrackInfoBackReference;
alternative->m_hasFixedSize = false;
break;
case PatternTerm::TypeForwardReference:
break;
case PatternTerm::TypePatternCharacter:
term.inputPosition = currentInputPosition;
if (term.quantityType != QuantifierFixedCount) {
term.frameLocation = currentCallFrameSize;
currentCallFrameSize += RegexStackSpaceForBackTrackInfoPatternCharacter;
alternative->m_hasFixedSize = false;
} else
currentInputPosition += term.quantityCount;
break;
case PatternTerm::TypeCharacterClass:
term.inputPosition = currentInputPosition;
if (term.quantityType != QuantifierFixedCount) {
term.frameLocation = currentCallFrameSize;
currentCallFrameSize += RegexStackSpaceForBackTrackInfoCharacterClass;
alternative->m_hasFixedSize = false;
} else
currentInputPosition += term.quantityCount;
break;
case PatternTerm::TypeParenthesesSubpattern:
// Note: for fixed once parentheses we will ensure at least the minimum is available; others are on their own.
term.frameLocation = currentCallFrameSize;
if ((term.quantityCount == 1) && !term.parentheses.isCopy) {
if (term.quantityType == QuantifierFixedCount) {
currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition);
currentInputPosition += term.parentheses.disjunction->m_minimumSize;
} else {
currentCallFrameSize += RegexStackSpaceForBackTrackInfoParenthesesOnce;
currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize, currentInputPosition);
}
term.inputPosition = currentInputPosition;
} else {
term.inputPosition = currentInputPosition;
setupDisjunctionOffsets(term.parentheses.disjunction, 0, currentInputPosition);
currentCallFrameSize += RegexStackSpaceForBackTrackInfoParentheses;
}
// Fixed count of 1 could be accepted, if they have a fixed size *AND* if all alternatives are of the same length.
alternative->m_hasFixedSize = false;
break;
case PatternTerm::TypeParentheticalAssertion:
term.inputPosition = currentInputPosition;
term.frameLocation = currentCallFrameSize;
currentCallFrameSize = setupDisjunctionOffsets(term.parentheses.disjunction, currentCallFrameSize + RegexStackSpaceForBackTrackInfoParentheticalAssertion, currentInputPosition);
break;
}
}
alternative->m_minimumSize = currentInputPosition - initialInputPosition;
return currentCallFrameSize;
}
unsigned setupDisjunctionOffsets(PatternDisjunction* disjunction, unsigned initialCallFrameSize, unsigned initialInputPosition)
{
if ((disjunction != m_pattern.m_body) && (disjunction->m_alternatives.size() > 1))
initialCallFrameSize += RegexStackSpaceForBackTrackInfoAlternative;
unsigned minimumInputSize = UINT_MAX;
unsigned maximumCallFrameSize = 0;
bool hasFixedSize = true;
for (unsigned alt = 0; alt < disjunction->m_alternatives.size(); ++alt) {
PatternAlternative* alternative = disjunction->m_alternatives[alt];
unsigned currentAlternativeCallFrameSize = setupAlternativeOffsets(alternative, initialCallFrameSize, initialInputPosition);
minimumInputSize = min(minimumInputSize, alternative->m_minimumSize);
maximumCallFrameSize = max(maximumCallFrameSize, currentAlternativeCallFrameSize);
hasFixedSize &= alternative->m_hasFixedSize;
}
ASSERT(minimumInputSize != UINT_MAX);
ASSERT(maximumCallFrameSize >= initialCallFrameSize);
disjunction->m_hasFixedSize = hasFixedSize;
disjunction->m_minimumSize = minimumInputSize;
disjunction->m_callFrameSize = maximumCallFrameSize;
return maximumCallFrameSize;
}
void setupOffsets()
{
setupDisjunctionOffsets(m_pattern.m_body, 0, 0);
}
private:
RegexPattern& m_pattern;
PatternAlternative* m_alternative;
CharacterClassConstructor m_characterClassConstructor;
bool m_invertCharacterClass;
};
const char* compileRegex(const UString& patternString, RegexPattern& pattern)
{
RegexPatternConstructor constructor(pattern);
if (const char* error = parse(constructor, patternString))
return error;
// If the pattern contains illegal backreferences reset & reparse.
// Quoting Netscape's "What's new in JavaScript 1.2",
// "Note: if the number of left parentheses is less than the number specified
// in \#, the \# is taken as an octal escape as described in the next row."
if (pattern.containsIllegalBackReference()) {
unsigned numSubpatterns = pattern.m_numSubpatterns;
constructor.reset();
#if !ASSERT_DISABLED
const char* error =
#endif
parse(constructor, patternString, numSubpatterns);
ASSERT(!error);
ASSERT(numSubpatterns == pattern.m_numSubpatterns);
}
constructor.setupOffsets();
return false;
};
} }
#endif
|