1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116
|
/*
* Copyright (C) 2005, 2006 Apple Computer, Inc. All rights reserved.
* Copyright (C) 2009 Torch Mobile, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "TransformationMatrix.h"
#include "FloatPoint3D.h"
#include "FloatRect.h"
#include "FloatQuad.h"
#include "IntRect.h"
#include <wtf/Assertions.h>
#include <wtf/MathExtras.h>
namespace WebCore {
//
// Supporting Math Functions
//
// This is a set of function from various places (attributed inline) to do things like
// inversion and decomposition of a 4x4 matrix. They are used throughout the code
//
//
// Adapted from Matrix Inversion by Richard Carling, Graphics Gems <http://tog.acm.org/GraphicsGems/index.html>.
// EULA: The Graphics Gems code is copyright-protected. In other words, you cannot claim the text of the code
// as your own and resell it. Using the code is permitted in any program, product, or library, non-commercial
// or commercial. Giving credit is not required, though is a nice gesture. The code comes as-is, and if there
// are any flaws or problems with any Gems code, nobody involved with Gems - authors, editors, publishers, or
// webmasters - are to be held responsible. Basically, don't be a jerk, and remember that anything free comes
// with no guarantee.
typedef double Vector4[4];
typedef double Vector3[3];
const double SMALL_NUMBER = 1.e-8;
// inverse(original_matrix, inverse_matrix)
//
// calculate the inverse of a 4x4 matrix
//
// -1
// A = ___1__ adjoint A
// det A
// double = determinant2x2(double a, double b, double c, double d)
//
// calculate the determinant of a 2x2 matrix.
static double determinant2x2(double a, double b, double c, double d)
{
return a * d - b * c;
}
// double = determinant3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3)
//
// Calculate the determinant of a 3x3 matrix
// in the form
//
// | a1, b1, c1 |
// | a2, b2, c2 |
// | a3, b3, c3 |
static double determinant3x3(double a1, double a2, double a3, double b1, double b2, double b3, double c1, double c2, double c3)
{
return a1 * determinant2x2(b2, b3, c2, c3)
- b1 * determinant2x2(a2, a3, c2, c3)
+ c1 * determinant2x2(a2, a3, b2, b3);
}
// double = determinant4x4(matrix)
//
// calculate the determinant of a 4x4 matrix.
static double determinant4x4(const TransformationMatrix::Matrix4& m)
{
// Assign to individual variable names to aid selecting
// correct elements
double a1 = m[0][0];
double b1 = m[0][1];
double c1 = m[0][2];
double d1 = m[0][3];
double a2 = m[1][0];
double b2 = m[1][1];
double c2 = m[1][2];
double d2 = m[1][3];
double a3 = m[2][0];
double b3 = m[2][1];
double c3 = m[2][2];
double d3 = m[2][3];
double a4 = m[3][0];
double b4 = m[3][1];
double c4 = m[3][2];
double d4 = m[3][3];
return a1 * determinant3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4)
- b1 * determinant3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4)
+ c1 * determinant3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4)
- d1 * determinant3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
}
// adjoint( original_matrix, inverse_matrix )
//
// calculate the adjoint of a 4x4 matrix
//
// Let a denote the minor determinant of matrix A obtained by
// ij
//
// deleting the ith row and jth column from A.
//
// i+j
// Let b = (-1) a
// ij ji
//
// The matrix B = (b ) is the adjoint of A
// ij
static void adjoint(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Matrix4& result)
{
// Assign to individual variable names to aid
// selecting correct values
double a1 = matrix[0][0];
double b1 = matrix[0][1];
double c1 = matrix[0][2];
double d1 = matrix[0][3];
double a2 = matrix[1][0];
double b2 = matrix[1][1];
double c2 = matrix[1][2];
double d2 = matrix[1][3];
double a3 = matrix[2][0];
double b3 = matrix[2][1];
double c3 = matrix[2][2];
double d3 = matrix[2][3];
double a4 = matrix[3][0];
double b4 = matrix[3][1];
double c4 = matrix[3][2];
double d4 = matrix[3][3];
// Row column labeling reversed since we transpose rows & columns
result[0][0] = determinant3x3(b2, b3, b4, c2, c3, c4, d2, d3, d4);
result[1][0] = - determinant3x3(a2, a3, a4, c2, c3, c4, d2, d3, d4);
result[2][0] = determinant3x3(a2, a3, a4, b2, b3, b4, d2, d3, d4);
result[3][0] = - determinant3x3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
result[0][1] = - determinant3x3(b1, b3, b4, c1, c3, c4, d1, d3, d4);
result[1][1] = determinant3x3(a1, a3, a4, c1, c3, c4, d1, d3, d4);
result[2][1] = - determinant3x3(a1, a3, a4, b1, b3, b4, d1, d3, d4);
result[3][1] = determinant3x3(a1, a3, a4, b1, b3, b4, c1, c3, c4);
result[0][2] = determinant3x3(b1, b2, b4, c1, c2, c4, d1, d2, d4);
result[1][2] = - determinant3x3(a1, a2, a4, c1, c2, c4, d1, d2, d4);
result[2][2] = determinant3x3(a1, a2, a4, b1, b2, b4, d1, d2, d4);
result[3][2] = - determinant3x3(a1, a2, a4, b1, b2, b4, c1, c2, c4);
result[0][3] = - determinant3x3(b1, b2, b3, c1, c2, c3, d1, d2, d3);
result[1][3] = determinant3x3(a1, a2, a3, c1, c2, c3, d1, d2, d3);
result[2][3] = - determinant3x3(a1, a2, a3, b1, b2, b3, d1, d2, d3);
result[3][3] = determinant3x3(a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
// Returns false if the matrix is not invertible
static bool inverse(const TransformationMatrix::Matrix4& matrix, TransformationMatrix::Matrix4& result)
{
// Calculate the adjoint matrix
adjoint(matrix, result);
// Calculate the 4x4 determinant
// If the determinant is zero,
// then the inverse matrix is not unique.
double det = determinant4x4(matrix);
if (fabs(det) < SMALL_NUMBER)
return false;
// Scale the adjoint matrix to get the inverse
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
result[i][j] = result[i][j] / det;
return true;
}
// End of code adapted from Matrix Inversion by Richard Carling
// Perform a decomposition on the passed matrix, return false if unsuccessful
// From Graphics Gems: unmatrix.c
// Transpose rotation portion of matrix a, return b
static void transposeMatrix4(const TransformationMatrix::Matrix4& a, TransformationMatrix::Matrix4& b)
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
b[i][j] = a[j][i];
}
// Multiply a homogeneous point by a matrix and return the transformed point
static void v4MulPointByMatrix(const Vector4 p, const TransformationMatrix::Matrix4& m, Vector4 result)
{
result[0] = (p[0] * m[0][0]) + (p[1] * m[1][0]) +
(p[2] * m[2][0]) + (p[3] * m[3][0]);
result[1] = (p[0] * m[0][1]) + (p[1] * m[1][1]) +
(p[2] * m[2][1]) + (p[3] * m[3][1]);
result[2] = (p[0] * m[0][2]) + (p[1] * m[1][2]) +
(p[2] * m[2][2]) + (p[3] * m[3][2]);
result[3] = (p[0] * m[0][3]) + (p[1] * m[1][3]) +
(p[2] * m[2][3]) + (p[3] * m[3][3]);
}
static double v3Length(Vector3 a)
{
return sqrt((a[0] * a[0]) + (a[1] * a[1]) + (a[2] * a[2]));
}
static void v3Scale(Vector3 v, double desiredLength)
{
double len = v3Length(v);
if (len != 0) {
double l = desiredLength / len;
v[0] *= l;
v[1] *= l;
v[2] *= l;
}
}
static double v3Dot(const Vector3 a, const Vector3 b)
{
return (a[0] * b[0]) + (a[1] * b[1]) + (a[2] * b[2]);
}
// Make a linear combination of two vectors and return the result.
// result = (a * ascl) + (b * bscl)
static void v3Combine(const Vector3 a, const Vector3 b, Vector3 result, double ascl, double bscl)
{
result[0] = (ascl * a[0]) + (bscl * b[0]);
result[1] = (ascl * a[1]) + (bscl * b[1]);
result[2] = (ascl * a[2]) + (bscl * b[2]);
}
// Return the cross product result = a cross b */
static void v3Cross(const Vector3 a, const Vector3 b, Vector3 result)
{
result[0] = (a[1] * b[2]) - (a[2] * b[1]);
result[1] = (a[2] * b[0]) - (a[0] * b[2]);
result[2] = (a[0] * b[1]) - (a[1] * b[0]);
}
static bool decompose(const TransformationMatrix::Matrix4& mat, TransformationMatrix::DecomposedType& result)
{
TransformationMatrix::Matrix4 localMatrix;
memcpy(localMatrix, mat, sizeof(TransformationMatrix::Matrix4));
// Normalize the matrix.
if (localMatrix[3][3] == 0)
return false;
int i, j;
for (i = 0; i < 4; i++)
for (j = 0; j < 4; j++)
localMatrix[i][j] /= localMatrix[3][3];
// perspectiveMatrix is used to solve for perspective, but it also provides
// an easy way to test for singularity of the upper 3x3 component.
TransformationMatrix::Matrix4 perspectiveMatrix;
memcpy(perspectiveMatrix, localMatrix, sizeof(TransformationMatrix::Matrix4));
for (i = 0; i < 3; i++)
perspectiveMatrix[i][3] = 0;
perspectiveMatrix[3][3] = 1;
if (determinant4x4(perspectiveMatrix) == 0)
return false;
// First, isolate perspective. This is the messiest.
if (localMatrix[0][3] != 0 || localMatrix[1][3] != 0 || localMatrix[2][3] != 0) {
// rightHandSide is the right hand side of the equation.
Vector4 rightHandSide;
rightHandSide[0] = localMatrix[0][3];
rightHandSide[1] = localMatrix[1][3];
rightHandSide[2] = localMatrix[2][3];
rightHandSide[3] = localMatrix[3][3];
// Solve the equation by inverting perspectiveMatrix and multiplying
// rightHandSide by the inverse. (This is the easiest way, not
// necessarily the best.)
TransformationMatrix::Matrix4 inversePerspectiveMatrix, transposedInversePerspectiveMatrix;
inverse(perspectiveMatrix, inversePerspectiveMatrix);
transposeMatrix4(inversePerspectiveMatrix, transposedInversePerspectiveMatrix);
Vector4 perspectivePoint;
v4MulPointByMatrix(rightHandSide, transposedInversePerspectiveMatrix, perspectivePoint);
result.perspectiveX = perspectivePoint[0];
result.perspectiveY = perspectivePoint[1];
result.perspectiveZ = perspectivePoint[2];
result.perspectiveW = perspectivePoint[3];
// Clear the perspective partition
localMatrix[0][3] = localMatrix[1][3] = localMatrix[2][3] = 0;
localMatrix[3][3] = 1;
} else {
// No perspective.
result.perspectiveX = result.perspectiveY = result.perspectiveZ = 0;
result.perspectiveW = 1;
}
// Next take care of translation (easy).
result.translateX = localMatrix[3][0];
localMatrix[3][0] = 0;
result.translateY = localMatrix[3][1];
localMatrix[3][1] = 0;
result.translateZ = localMatrix[3][2];
localMatrix[3][2] = 0;
// Vector4 type and functions need to be added to the common set.
Vector3 row[3], pdum3;
// Now get scale and shear.
for (i = 0; i < 3; i++) {
row[i][0] = localMatrix[i][0];
row[i][1] = localMatrix[i][1];
row[i][2] = localMatrix[i][2];
}
// Compute X scale factor and normalize first row.
result.scaleX = v3Length(row[0]);
v3Scale(row[0], 1.0);
// Compute XY shear factor and make 2nd row orthogonal to 1st.
result.skewXY = v3Dot(row[0], row[1]);
v3Combine(row[1], row[0], row[1], 1.0, -result.skewXY);
// Now, compute Y scale and normalize 2nd row.
result.scaleY = v3Length(row[1]);
v3Scale(row[1], 1.0);
result.skewXY /= result.scaleY;
// Compute XZ and YZ shears, orthogonalize 3rd row.
result.skewXZ = v3Dot(row[0], row[2]);
v3Combine(row[2], row[0], row[2], 1.0, -result.skewXZ);
result.skewYZ = v3Dot(row[1], row[2]);
v3Combine(row[2], row[1], row[2], 1.0, -result.skewYZ);
// Next, get Z scale and normalize 3rd row.
result.scaleZ = v3Length(row[2]);
v3Scale(row[2], 1.0);
result.skewXZ /= result.scaleZ;
result.skewYZ /= result.scaleZ;
// At this point, the matrix (in rows[]) is orthonormal.
// Check for a coordinate system flip. If the determinant
// is -1, then negate the matrix and the scaling factors.
v3Cross(row[1], row[2], pdum3);
if (v3Dot(row[0], pdum3) < 0) {
for (i = 0; i < 3; i++) {
result.scaleX *= -1;
row[i][0] *= -1;
row[i][1] *= -1;
row[i][2] *= -1;
}
}
// Now, get the rotations out, as described in the gem.
// FIXME - Add the ability to return either quaternions (which are
// easier to recompose with) or Euler angles (rx, ry, rz), which
// are easier for authors to deal with. The latter will only be useful
// when we fix https://bugs.webkit.org/show_bug.cgi?id=23799, so I
// will leave the Euler angle code here for now.
// ret.rotateY = asin(-row[0][2]);
// if (cos(ret.rotateY) != 0) {
// ret.rotateX = atan2(row[1][2], row[2][2]);
// ret.rotateZ = atan2(row[0][1], row[0][0]);
// } else {
// ret.rotateX = atan2(-row[2][0], row[1][1]);
// ret.rotateZ = 0;
// }
double s, t, x, y, z, w;
t = row[0][0] + row[1][1] + row[2][2] + 1.0;
if (t > 1e-4) {
s = 0.5 / sqrt(t);
w = 0.25 / s;
x = (row[2][1] - row[1][2]) * s;
y = (row[0][2] - row[2][0]) * s;
z = (row[1][0] - row[0][1]) * s;
} else if (row[0][0] > row[1][1] && row[0][0] > row[2][2]) {
s = sqrt (1.0 + row[0][0] - row[1][1] - row[2][2]) * 2.0; // S=4*qx
x = 0.25 * s;
y = (row[0][1] + row[1][0]) / s;
z = (row[0][2] + row[2][0]) / s;
w = (row[2][1] - row[1][2]) / s;
} else if (row[1][1] > row[2][2]) {
s = sqrt (1.0 + row[1][1] - row[0][0] - row[2][2]) * 2.0; // S=4*qy
x = (row[0][1] + row[1][0]) / s;
y = 0.25 * s;
z = (row[1][2] + row[2][1]) / s;
w = (row[0][2] - row[2][0]) / s;
} else {
s = sqrt(1.0 + row[2][2] - row[0][0] - row[1][1]) * 2.0; // S=4*qz
x = (row[0][2] + row[2][0]) / s;
y = (row[1][2] + row[2][1]) / s;
z = 0.25 * s;
w = (row[1][0] - row[0][1]) / s;
}
result.quaternionX = x;
result.quaternionY = y;
result.quaternionZ = z;
result.quaternionW = w;
return true;
}
// Perform a spherical linear interpolation between the two
// passed quaternions with 0 <= t <= 1
static void slerp(double qa[4], const double qb[4], double t)
{
double ax, ay, az, aw;
double bx, by, bz, bw;
double cx, cy, cz, cw;
double angle;
double th, invth, scale, invscale;
ax = qa[0]; ay = qa[1]; az = qa[2]; aw = qa[3];
bx = qb[0]; by = qb[1]; bz = qb[2]; bw = qb[3];
angle = ax * bx + ay * by + az * bz + aw * bw;
if (angle < 0.0) {
ax = -ax; ay = -ay;
az = -az; aw = -aw;
angle = -angle;
}
if (angle + 1.0 > .05) {
if (1.0 - angle >= .05) {
th = acos (angle);
invth = 1.0 / sin (th);
scale = sin (th * (1.0 - t)) * invth;
invscale = sin (th * t) * invth;
} else {
scale = 1.0 - t;
invscale = t;
}
} else {
bx = -ay;
by = ax;
bz = -aw;
bw = az;
scale = sin(piDouble * (.5 - t));
invscale = sin (piDouble * t);
}
cx = ax * scale + bx * invscale;
cy = ay * scale + by * invscale;
cz = az * scale + bz * invscale;
cw = aw * scale + bw * invscale;
qa[0] = cx; qa[1] = cy; qa[2] = cz; qa[3] = cw;
}
// End of Supporting Math Functions
TransformationMatrix& TransformationMatrix::scale(double s)
{
return scaleNonUniform(s, s);
}
TransformationMatrix& TransformationMatrix::rotateFromVector(double x, double y)
{
return rotate(rad2deg(atan2(y, x)));
}
TransformationMatrix& TransformationMatrix::flipX()
{
return scaleNonUniform(-1.0f, 1.0f);
}
TransformationMatrix& TransformationMatrix::flipY()
{
return scaleNonUniform(1.0f, -1.0f);
}
FloatPoint TransformationMatrix::projectPoint(const FloatPoint& p) const
{
// This is basically raytracing. We have a point in the destination
// plane with z=0, and we cast a ray parallel to the z-axis from that
// point to find the z-position at which it intersects the z=0 plane
// with the transform applied. Once we have that point we apply the
// inverse transform to find the corresponding point in the source
// space.
//
// Given a plane with normal Pn, and a ray starting at point R0 and
// with direction defined by the vector Rd, we can find the
// intersection point as a distance d from R0 in units of Rd by:
//
// d = -dot (Pn', R0) / dot (Pn', Rd)
double x = p.x();
double y = p.y();
double z = -(m13() * x + m23() * y + m43()) / m33();
double outX = x * m11() + y * m21() + z * m31() + m41();
double outY = x * m12() + y * m22() + z * m32() + m42();
double w = x * m14() + y * m24() + z * m34() + m44();
if (w != 1 && w != 0) {
outX /= w;
outY /= w;
}
return FloatPoint(static_cast<float>(outX), static_cast<float>(outY));
}
FloatQuad TransformationMatrix::projectQuad(const FloatQuad& q) const
{
FloatQuad projectedQuad;
projectedQuad.setP1(projectPoint(q.p1()));
projectedQuad.setP2(projectPoint(q.p2()));
projectedQuad.setP3(projectPoint(q.p3()));
projectedQuad.setP4(projectPoint(q.p4()));
return projectedQuad;
}
FloatPoint TransformationMatrix::mapPoint(const FloatPoint& p) const
{
if (isIdentityOrTranslation())
return FloatPoint(p.x() + static_cast<float>(m_matrix[3][0]), p.y() + static_cast<float>(m_matrix[3][1]));
double x, y;
multVecMatrix(p.x(), p.y(), x, y);
return FloatPoint(static_cast<float>(x), static_cast<float>(y));
}
FloatPoint3D TransformationMatrix::mapPoint(const FloatPoint3D& p) const
{
if (isIdentityOrTranslation())
return FloatPoint3D(p.x() + static_cast<float>(m_matrix[3][0]),
p.y() + static_cast<float>(m_matrix[3][1]),
p.z() + static_cast<float>(m_matrix[3][2]));
double x, y, z;
multVecMatrix(p.x(), p.y(), p.z(), x, y, z);
return FloatPoint3D(static_cast<float>(x), static_cast<float>(y), static_cast<float>(z));
}
IntRect TransformationMatrix::mapRect(const IntRect &rect) const
{
return enclosingIntRect(mapRect(FloatRect(rect)));
}
FloatRect TransformationMatrix::mapRect(const FloatRect& r) const
{
if (isIdentityOrTranslation()) {
FloatRect mappedRect(r);
mappedRect.move(static_cast<float>(m_matrix[3][0]), static_cast<float>(m_matrix[3][1]));
return mappedRect;
}
FloatQuad resultQuad = mapQuad(FloatQuad(r));
return resultQuad.boundingBox();
}
FloatQuad TransformationMatrix::mapQuad(const FloatQuad& q) const
{
if (isIdentityOrTranslation()) {
FloatQuad mappedQuad(q);
mappedQuad.move(static_cast<float>(m_matrix[3][0]), static_cast<float>(m_matrix[3][1]));
return mappedQuad;
}
FloatQuad result;
result.setP1(mapPoint(q.p1()));
result.setP2(mapPoint(q.p2()));
result.setP3(mapPoint(q.p3()));
result.setP4(mapPoint(q.p4()));
return result;
}
TransformationMatrix& TransformationMatrix::scaleNonUniform(double sx, double sy)
{
TransformationMatrix mat;
mat.m_matrix[0][0] = sx;
mat.m_matrix[1][1] = sy;
multLeft(mat);
return *this;
}
TransformationMatrix& TransformationMatrix::scale3d(double sx, double sy, double sz)
{
TransformationMatrix mat;
mat.m_matrix[0][0] = sx;
mat.m_matrix[1][1] = sy;
mat.m_matrix[2][2] = sz;
multLeft(mat);
return *this;
}
TransformationMatrix& TransformationMatrix::rotate3d(double x, double y, double z, double angle)
{
// angles are in degrees. Switch to radians
angle = deg2rad(angle);
angle /= 2.0f;
double sinA = sin(angle);
double cosA = cos(angle);
double sinA2 = sinA * sinA;
// normalize
double length = sqrt(x * x + y * y + z * z);
if (length == 0) {
// bad vector, just use something reasonable
x = 0;
y = 0;
z = 1;
} else if (length != 1) {
x /= length;
y /= length;
z /= length;
}
TransformationMatrix mat;
// optimize case where axis is along major axis
if (x == 1.0f && y == 0.0f && z == 0.0f) {
mat.m_matrix[0][0] = 1.0f;
mat.m_matrix[0][1] = 0.0f;
mat.m_matrix[0][2] = 0.0f;
mat.m_matrix[1][0] = 0.0f;
mat.m_matrix[1][1] = 1.0f - 2.0f * sinA2;
mat.m_matrix[1][2] = 2.0f * sinA * cosA;
mat.m_matrix[2][0] = 0.0f;
mat.m_matrix[2][1] = -2.0f * sinA * cosA;
mat.m_matrix[2][2] = 1.0f - 2.0f * sinA2;
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
mat.m_matrix[3][3] = 1.0f;
} else if (x == 0.0f && y == 1.0f && z == 0.0f) {
mat.m_matrix[0][0] = 1.0f - 2.0f * sinA2;
mat.m_matrix[0][1] = 0.0f;
mat.m_matrix[0][2] = -2.0f * sinA * cosA;
mat.m_matrix[1][0] = 0.0f;
mat.m_matrix[1][1] = 1.0f;
mat.m_matrix[1][2] = 0.0f;
mat.m_matrix[2][0] = 2.0f * sinA * cosA;
mat.m_matrix[2][1] = 0.0f;
mat.m_matrix[2][2] = 1.0f - 2.0f * sinA2;
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
mat.m_matrix[3][3] = 1.0f;
} else if (x == 0.0f && y == 0.0f && z == 1.0f) {
mat.m_matrix[0][0] = 1.0f - 2.0f * sinA2;
mat.m_matrix[0][1] = 2.0f * sinA * cosA;
mat.m_matrix[0][2] = 0.0f;
mat.m_matrix[1][0] = -2.0f * sinA * cosA;
mat.m_matrix[1][1] = 1.0f - 2.0f * sinA2;
mat.m_matrix[1][2] = 0.0f;
mat.m_matrix[2][0] = 0.0f;
mat.m_matrix[2][1] = 0.0f;
mat.m_matrix[2][2] = 1.0f;
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
mat.m_matrix[3][3] = 1.0f;
} else {
double x2 = x*x;
double y2 = y*y;
double z2 = z*z;
mat.m_matrix[0][0] = 1.0f - 2.0f * (y2 + z2) * sinA2;
mat.m_matrix[0][1] = 2.0f * (x * y * sinA2 + z * sinA * cosA);
mat.m_matrix[0][2] = 2.0f * (x * z * sinA2 - y * sinA * cosA);
mat.m_matrix[1][0] = 2.0f * (y * x * sinA2 - z * sinA * cosA);
mat.m_matrix[1][1] = 1.0f - 2.0f * (z2 + x2) * sinA2;
mat.m_matrix[1][2] = 2.0f * (y * z * sinA2 + x * sinA * cosA);
mat.m_matrix[2][0] = 2.0f * (z * x * sinA2 + y * sinA * cosA);
mat.m_matrix[2][1] = 2.0f * (z * y * sinA2 - x * sinA * cosA);
mat.m_matrix[2][2] = 1.0f - 2.0f * (x2 + y2) * sinA2;
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
mat.m_matrix[3][3] = 1.0f;
}
multLeft(mat);
return *this;
}
TransformationMatrix& TransformationMatrix::rotate3d(double rx, double ry, double rz)
{
// angles are in degrees. Switch to radians
rx = deg2rad(rx);
ry = deg2rad(ry);
rz = deg2rad(rz);
TransformationMatrix mat;
rz /= 2.0f;
double sinA = sin(rz);
double cosA = cos(rz);
double sinA2 = sinA * sinA;
mat.m_matrix[0][0] = 1.0f - 2.0f * sinA2;
mat.m_matrix[0][1] = 2.0f * sinA * cosA;
mat.m_matrix[0][2] = 0.0f;
mat.m_matrix[1][0] = -2.0f * sinA * cosA;
mat.m_matrix[1][1] = 1.0f - 2.0f * sinA2;
mat.m_matrix[1][2] = 0.0f;
mat.m_matrix[2][0] = 0.0f;
mat.m_matrix[2][1] = 0.0f;
mat.m_matrix[2][2] = 1.0f;
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
mat.m_matrix[3][3] = 1.0f;
TransformationMatrix rmat(mat);
ry /= 2.0f;
sinA = sin(ry);
cosA = cos(ry);
sinA2 = sinA * sinA;
mat.m_matrix[0][0] = 1.0f - 2.0f * sinA2;
mat.m_matrix[0][1] = 0.0f;
mat.m_matrix[0][2] = -2.0f * sinA * cosA;
mat.m_matrix[1][0] = 0.0f;
mat.m_matrix[1][1] = 1.0f;
mat.m_matrix[1][2] = 0.0f;
mat.m_matrix[2][0] = 2.0f * sinA * cosA;
mat.m_matrix[2][1] = 0.0f;
mat.m_matrix[2][2] = 1.0f - 2.0f * sinA2;
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
mat.m_matrix[3][3] = 1.0f;
rmat.multLeft(mat);
rx /= 2.0f;
sinA = sin(rx);
cosA = cos(rx);
sinA2 = sinA * sinA;
mat.m_matrix[0][0] = 1.0f;
mat.m_matrix[0][1] = 0.0f;
mat.m_matrix[0][2] = 0.0f;
mat.m_matrix[1][0] = 0.0f;
mat.m_matrix[1][1] = 1.0f - 2.0f * sinA2;
mat.m_matrix[1][2] = 2.0f * sinA * cosA;
mat.m_matrix[2][0] = 0.0f;
mat.m_matrix[2][1] = -2.0f * sinA * cosA;
mat.m_matrix[2][2] = 1.0f - 2.0f * sinA2;
mat.m_matrix[0][3] = mat.m_matrix[1][3] = mat.m_matrix[2][3] = 0.0f;
mat.m_matrix[3][0] = mat.m_matrix[3][1] = mat.m_matrix[3][2] = 0.0f;
mat.m_matrix[3][3] = 1.0f;
rmat.multLeft(mat);
multLeft(rmat);
return *this;
}
TransformationMatrix& TransformationMatrix::translate(double tx, double ty)
{
m_matrix[3][0] += tx * m_matrix[0][0] + ty * m_matrix[1][0];
m_matrix[3][1] += tx * m_matrix[0][1] + ty * m_matrix[1][1];
m_matrix[3][2] += tx * m_matrix[0][2] + ty * m_matrix[1][2];
m_matrix[3][3] += tx * m_matrix[0][3] + ty * m_matrix[1][3];
return *this;
}
TransformationMatrix& TransformationMatrix::translate3d(double tx, double ty, double tz)
{
m_matrix[3][0] += tx * m_matrix[0][0] + ty * m_matrix[1][0] + tz * m_matrix[2][0];
m_matrix[3][1] += tx * m_matrix[0][1] + ty * m_matrix[1][1] + tz * m_matrix[2][1];
m_matrix[3][2] += tx * m_matrix[0][2] + ty * m_matrix[1][2] + tz * m_matrix[2][2];
m_matrix[3][3] += tx * m_matrix[0][3] + ty * m_matrix[1][3] + tz * m_matrix[2][3];
return *this;
}
TransformationMatrix& TransformationMatrix::translateRight(double tx, double ty)
{
if (tx != 0) {
m_matrix[0][0] += m_matrix[0][3] * tx;
m_matrix[1][0] += m_matrix[1][3] * tx;
m_matrix[2][0] += m_matrix[2][3] * tx;
m_matrix[3][0] += m_matrix[3][3] * tx;
}
if (ty != 0) {
m_matrix[0][1] += m_matrix[0][3] * ty;
m_matrix[1][1] += m_matrix[1][3] * ty;
m_matrix[2][1] += m_matrix[2][3] * ty;
m_matrix[3][1] += m_matrix[3][3] * ty;
}
return *this;
}
TransformationMatrix& TransformationMatrix::translateRight3d(double tx, double ty, double tz)
{
translateRight(tx, ty);
if (tz != 0) {
m_matrix[0][2] += m_matrix[0][3] * tz;
m_matrix[1][2] += m_matrix[1][3] * tz;
m_matrix[2][2] += m_matrix[2][3] * tz;
m_matrix[3][2] += m_matrix[3][3] * tz;
}
return *this;
}
TransformationMatrix& TransformationMatrix::skew(double sx, double sy)
{
// angles are in degrees. Switch to radians
sx = deg2rad(sx);
sy = deg2rad(sy);
TransformationMatrix mat;
mat.m_matrix[0][1] = tan(sy); // note that the y shear goes in the first row
mat.m_matrix[1][0] = tan(sx); // and the x shear in the second row
multLeft(mat);
return *this;
}
TransformationMatrix& TransformationMatrix::applyPerspective(double p)
{
TransformationMatrix mat;
if (p != 0)
mat.m_matrix[2][3] = -1/p;
multLeft(mat);
return *this;
}
TransformationMatrix TransformationMatrix::rectToRect(const FloatRect& from, const FloatRect& to)
{
ASSERT(!from.isEmpty());
return TransformationMatrix(to.width() / from.width(),
0, 0,
to.height() / from.height(),
to.x() - from.x(),
to.y() - from.y());
}
//
// *this = mat * *this
//
TransformationMatrix& TransformationMatrix::multLeft(const TransformationMatrix& mat)
{
Matrix4 tmp;
tmp[0][0] = (mat.m_matrix[0][0] * m_matrix[0][0] + mat.m_matrix[0][1] * m_matrix[1][0]
+ mat.m_matrix[0][2] * m_matrix[2][0] + mat.m_matrix[0][3] * m_matrix[3][0]);
tmp[0][1] = (mat.m_matrix[0][0] * m_matrix[0][1] + mat.m_matrix[0][1] * m_matrix[1][1]
+ mat.m_matrix[0][2] * m_matrix[2][1] + mat.m_matrix[0][3] * m_matrix[3][1]);
tmp[0][2] = (mat.m_matrix[0][0] * m_matrix[0][2] + mat.m_matrix[0][1] * m_matrix[1][2]
+ mat.m_matrix[0][2] * m_matrix[2][2] + mat.m_matrix[0][3] * m_matrix[3][2]);
tmp[0][3] = (mat.m_matrix[0][0] * m_matrix[0][3] + mat.m_matrix[0][1] * m_matrix[1][3]
+ mat.m_matrix[0][2] * m_matrix[2][3] + mat.m_matrix[0][3] * m_matrix[3][3]);
tmp[1][0] = (mat.m_matrix[1][0] * m_matrix[0][0] + mat.m_matrix[1][1] * m_matrix[1][0]
+ mat.m_matrix[1][2] * m_matrix[2][0] + mat.m_matrix[1][3] * m_matrix[3][0]);
tmp[1][1] = (mat.m_matrix[1][0] * m_matrix[0][1] + mat.m_matrix[1][1] * m_matrix[1][1]
+ mat.m_matrix[1][2] * m_matrix[2][1] + mat.m_matrix[1][3] * m_matrix[3][1]);
tmp[1][2] = (mat.m_matrix[1][0] * m_matrix[0][2] + mat.m_matrix[1][1] * m_matrix[1][2]
+ mat.m_matrix[1][2] * m_matrix[2][2] + mat.m_matrix[1][3] * m_matrix[3][2]);
tmp[1][3] = (mat.m_matrix[1][0] * m_matrix[0][3] + mat.m_matrix[1][1] * m_matrix[1][3]
+ mat.m_matrix[1][2] * m_matrix[2][3] + mat.m_matrix[1][3] * m_matrix[3][3]);
tmp[2][0] = (mat.m_matrix[2][0] * m_matrix[0][0] + mat.m_matrix[2][1] * m_matrix[1][0]
+ mat.m_matrix[2][2] * m_matrix[2][0] + mat.m_matrix[2][3] * m_matrix[3][0]);
tmp[2][1] = (mat.m_matrix[2][0] * m_matrix[0][1] + mat.m_matrix[2][1] * m_matrix[1][1]
+ mat.m_matrix[2][2] * m_matrix[2][1] + mat.m_matrix[2][3] * m_matrix[3][1]);
tmp[2][2] = (mat.m_matrix[2][0] * m_matrix[0][2] + mat.m_matrix[2][1] * m_matrix[1][2]
+ mat.m_matrix[2][2] * m_matrix[2][2] + mat.m_matrix[2][3] * m_matrix[3][2]);
tmp[2][3] = (mat.m_matrix[2][0] * m_matrix[0][3] + mat.m_matrix[2][1] * m_matrix[1][3]
+ mat.m_matrix[2][2] * m_matrix[2][3] + mat.m_matrix[2][3] * m_matrix[3][3]);
tmp[3][0] = (mat.m_matrix[3][0] * m_matrix[0][0] + mat.m_matrix[3][1] * m_matrix[1][0]
+ mat.m_matrix[3][2] * m_matrix[2][0] + mat.m_matrix[3][3] * m_matrix[3][0]);
tmp[3][1] = (mat.m_matrix[3][0] * m_matrix[0][1] + mat.m_matrix[3][1] * m_matrix[1][1]
+ mat.m_matrix[3][2] * m_matrix[2][1] + mat.m_matrix[3][3] * m_matrix[3][1]);
tmp[3][2] = (mat.m_matrix[3][0] * m_matrix[0][2] + mat.m_matrix[3][1] * m_matrix[1][2]
+ mat.m_matrix[3][2] * m_matrix[2][2] + mat.m_matrix[3][3] * m_matrix[3][2]);
tmp[3][3] = (mat.m_matrix[3][0] * m_matrix[0][3] + mat.m_matrix[3][1] * m_matrix[1][3]
+ mat.m_matrix[3][2] * m_matrix[2][3] + mat.m_matrix[3][3] * m_matrix[3][3]);
setMatrix(tmp);
return *this;
}
void TransformationMatrix::multVecMatrix(double x, double y, double& resultX, double& resultY) const
{
resultX = m_matrix[3][0] + x * m_matrix[0][0] + y * m_matrix[1][0];
resultY = m_matrix[3][1] + x * m_matrix[0][1] + y * m_matrix[1][1];
double w = m_matrix[3][3] + x * m_matrix[0][3] + y * m_matrix[1][3];
if (w != 1 && w != 0) {
resultX /= w;
resultY /= w;
}
}
void TransformationMatrix::multVecMatrix(double x, double y, double z, double& resultX, double& resultY, double& resultZ) const
{
resultX = m_matrix[3][0] + x * m_matrix[0][0] + y * m_matrix[1][0] + z * m_matrix[2][0];
resultY = m_matrix[3][1] + x * m_matrix[0][1] + y * m_matrix[1][1] + z * m_matrix[2][1];
resultZ = m_matrix[3][2] + x * m_matrix[0][2] + y * m_matrix[1][2] + z * m_matrix[2][2];
double w = m_matrix[3][3] + x * m_matrix[0][3] + y * m_matrix[1][3] + z * m_matrix[2][3];
if (w != 1 && w != 0) {
resultX /= w;
resultY /= w;
resultZ /= w;
}
}
bool TransformationMatrix::isInvertible() const
{
if (isIdentityOrTranslation())
return true;
double det = WebCore::determinant4x4(m_matrix);
if (fabs(det) < SMALL_NUMBER)
return false;
return true;
}
TransformationMatrix TransformationMatrix::inverse() const
{
if (isIdentityOrTranslation()) {
// identity matrix
if (m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0)
return TransformationMatrix();
// translation
return TransformationMatrix(1, 0, 0, 0,
0, 1, 0, 0,
0, 0, 1, 0,
-m_matrix[3][0], -m_matrix[3][1], -m_matrix[3][2], 1);
}
TransformationMatrix invMat;
bool inverted = WebCore::inverse(m_matrix, invMat.m_matrix);
if (!inverted)
return TransformationMatrix();
return invMat;
}
void TransformationMatrix::makeAffine()
{
m_matrix[0][2] = 0;
m_matrix[0][3] = 0;
m_matrix[1][2] = 0;
m_matrix[1][3] = 0;
m_matrix[2][0] = 0;
m_matrix[2][1] = 0;
m_matrix[2][2] = 1;
m_matrix[2][3] = 0;
m_matrix[3][2] = 0;
m_matrix[3][3] = 1;
}
AffineTransform TransformationMatrix::toAffineTransform() const
{
return AffineTransform(m_matrix[0][0], m_matrix[0][1], m_matrix[1][0],
m_matrix[1][1], m_matrix[3][0], m_matrix[3][1]);
}
static inline void blendFloat(double& from, double to, double progress)
{
if (from != to)
from = from + (to - from) * progress;
}
void TransformationMatrix::blend(const TransformationMatrix& from, double progress)
{
if (from.isIdentity() && isIdentity())
return;
// decompose
DecomposedType fromDecomp;
DecomposedType toDecomp;
from.decompose(fromDecomp);
decompose(toDecomp);
// interpolate
blendFloat(fromDecomp.scaleX, toDecomp.scaleX, progress);
blendFloat(fromDecomp.scaleY, toDecomp.scaleY, progress);
blendFloat(fromDecomp.scaleZ, toDecomp.scaleZ, progress);
blendFloat(fromDecomp.skewXY, toDecomp.skewXY, progress);
blendFloat(fromDecomp.skewXZ, toDecomp.skewXZ, progress);
blendFloat(fromDecomp.skewYZ, toDecomp.skewYZ, progress);
blendFloat(fromDecomp.translateX, toDecomp.translateX, progress);
blendFloat(fromDecomp.translateY, toDecomp.translateY, progress);
blendFloat(fromDecomp.translateZ, toDecomp.translateZ, progress);
blendFloat(fromDecomp.perspectiveX, toDecomp.perspectiveX, progress);
blendFloat(fromDecomp.perspectiveY, toDecomp.perspectiveY, progress);
blendFloat(fromDecomp.perspectiveZ, toDecomp.perspectiveZ, progress);
blendFloat(fromDecomp.perspectiveW, toDecomp.perspectiveW, progress);
slerp(&fromDecomp.quaternionX, &toDecomp.quaternionX, progress);
// recompose
recompose(fromDecomp);
}
bool TransformationMatrix::decompose(DecomposedType& decomp) const
{
if (isIdentity()) {
memset(&decomp, 0, sizeof(decomp));
decomp.perspectiveW = 1;
decomp.scaleX = 1;
decomp.scaleY = 1;
decomp.scaleZ = 1;
}
if (!WebCore::decompose(m_matrix, decomp))
return false;
return true;
}
void TransformationMatrix::recompose(const DecomposedType& decomp)
{
makeIdentity();
// first apply perspective
m_matrix[0][3] = (float) decomp.perspectiveX;
m_matrix[1][3] = (float) decomp.perspectiveY;
m_matrix[2][3] = (float) decomp.perspectiveZ;
m_matrix[3][3] = (float) decomp.perspectiveW;
// now translate
translate3d((float) decomp.translateX, (float) decomp.translateY, (float) decomp.translateZ);
// apply rotation
double xx = decomp.quaternionX * decomp.quaternionX;
double xy = decomp.quaternionX * decomp.quaternionY;
double xz = decomp.quaternionX * decomp.quaternionZ;
double xw = decomp.quaternionX * decomp.quaternionW;
double yy = decomp.quaternionY * decomp.quaternionY;
double yz = decomp.quaternionY * decomp.quaternionZ;
double yw = decomp.quaternionY * decomp.quaternionW;
double zz = decomp.quaternionZ * decomp.quaternionZ;
double zw = decomp.quaternionZ * decomp.quaternionW;
// Construct a composite rotation matrix from the quaternion values
TransformationMatrix rotationMatrix(1 - 2 * (yy + zz), 2 * (xy - zw), 2 * (xz + yw), 0,
2 * (xy + zw), 1 - 2 * (xx + zz), 2 * (yz - xw), 0,
2 * (xz - yw), 2 * (yz + xw), 1 - 2 * (xx + yy), 0,
0, 0, 0, 1);
multLeft(rotationMatrix);
// now apply skew
if (decomp.skewYZ) {
TransformationMatrix tmp;
tmp.setM32((float) decomp.skewYZ);
multLeft(tmp);
}
if (decomp.skewXZ) {
TransformationMatrix tmp;
tmp.setM31((float) decomp.skewXZ);
multLeft(tmp);
}
if (decomp.skewXY) {
TransformationMatrix tmp;
tmp.setM21((float) decomp.skewXY);
multLeft(tmp);
}
// finally, apply scale
scale3d((float) decomp.scaleX, (float) decomp.scaleY, (float) decomp.scaleZ);
}
}
|