1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
|
/*
* Copyright (C) 2005, 2006 Apple Computer, Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef TransformationMatrix_h
#define TransformationMatrix_h
#include "AffineTransform.h"
#include "FloatPoint.h"
#include "IntPoint.h"
#include <string.h> //for memcpy
#include <wtf/FastAllocBase.h>
#if PLATFORM(CG)
#include <CoreGraphics/CGAffineTransform.h>
#elif PLATFORM(CAIRO)
#include <cairo.h>
#elif PLATFORM(OPENVG)
#include "VGUtils.h"
#elif PLATFORM(QT)
#include <QTransform>
#elif PLATFORM(SKIA)
#include <SkMatrix.h>
#elif PLATFORM(WX) && USE(WXGC)
#include <wx/graphics.h>
#endif
#if PLATFORM(WIN) || (PLATFORM(QT) && OS(WINDOWS)) || (PLATFORM(WX) && OS(WINDOWS))
#if COMPILER(MINGW)
typedef struct _XFORM XFORM;
#else
typedef struct tagXFORM XFORM;
#endif
#endif
namespace WebCore {
class AffineTransform;
class IntRect;
class FloatPoint3D;
class FloatRect;
class FloatQuad;
class TransformationMatrix : public FastAllocBase {
public:
typedef double Matrix4[4][4];
TransformationMatrix() { makeIdentity(); }
TransformationMatrix(const TransformationMatrix& t) { *this = t; }
TransformationMatrix(double a, double b, double c, double d, double e, double f) { setMatrix(a, b, c, d, e, f); }
TransformationMatrix(double m11, double m12, double m13, double m14,
double m21, double m22, double m23, double m24,
double m31, double m32, double m33, double m34,
double m41, double m42, double m43, double m44)
{
setMatrix(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44);
}
void setMatrix(double a, double b, double c, double d, double e, double f)
{
m_matrix[0][0] = a; m_matrix[0][1] = b; m_matrix[0][2] = 0; m_matrix[0][3] = 0;
m_matrix[1][0] = c; m_matrix[1][1] = d; m_matrix[1][2] = 0; m_matrix[1][3] = 0;
m_matrix[2][0] = 0; m_matrix[2][1] = 0; m_matrix[2][2] = 1; m_matrix[2][3] = 0;
m_matrix[3][0] = e; m_matrix[3][1] = f; m_matrix[3][2] = 0; m_matrix[3][3] = 1;
}
void setMatrix(double m11, double m12, double m13, double m14,
double m21, double m22, double m23, double m24,
double m31, double m32, double m33, double m34,
double m41, double m42, double m43, double m44)
{
m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; m_matrix[0][3] = m14;
m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; m_matrix[1][3] = m24;
m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; m_matrix[2][3] = m34;
m_matrix[3][0] = m41; m_matrix[3][1] = m42; m_matrix[3][2] = m43; m_matrix[3][3] = m44;
}
TransformationMatrix& operator =(const TransformationMatrix &t)
{
setMatrix(t.m_matrix);
return *this;
}
TransformationMatrix& makeIdentity()
{
setMatrix(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1);
return *this;
}
bool isIdentity() const
{
return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0 &&
m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0 &&
m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 &&
m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0 && m_matrix[3][3] == 1;
}
// This form preserves the double math from input to output
void map(double x, double y, double& x2, double& y2) const { multVecMatrix(x, y, x2, y2); }
// Map a 3D point through the transform, returning a 3D point.
FloatPoint3D mapPoint(const FloatPoint3D&) const;
// Map a 2D point through the transform, returning a 2D point.
// Note that this ignores the z component, effectively projecting the point into the z=0 plane.
FloatPoint mapPoint(const FloatPoint&) const;
// Like the version above, except that it rounds the mapped point to the nearest integer value.
IntPoint mapPoint(const IntPoint& p) const
{
return roundedIntPoint(mapPoint(FloatPoint(p)));
}
// If the matrix has 3D components, the z component of the result is
// dropped, effectively projecting the rect into the z=0 plane
FloatRect mapRect(const FloatRect&) const;
// Rounds the resulting mapped rectangle out. This is helpful for bounding
// box computations but may not be what is wanted in other contexts.
IntRect mapRect(const IntRect&) const;
// If the matrix has 3D components, the z component of the result is
// dropped, effectively projecting the quad into the z=0 plane
FloatQuad mapQuad(const FloatQuad&) const;
// Map a point on the z=0 plane into a point on
// the plane with with the transform applied, by extending
// a ray perpendicular to the source plane and computing
// the local x,y position of the point where that ray intersects
// with the destination plane.
FloatPoint projectPoint(const FloatPoint&) const;
// Projects the four corners of the quad
FloatQuad projectQuad(const FloatQuad&) const;
double m11() const { return m_matrix[0][0]; }
void setM11(double f) { m_matrix[0][0] = f; }
double m12() const { return m_matrix[0][1]; }
void setM12(double f) { m_matrix[0][1] = f; }
double m13() const { return m_matrix[0][2]; }
void setM13(double f) { m_matrix[0][2] = f; }
double m14() const { return m_matrix[0][3]; }
void setM14(double f) { m_matrix[0][3] = f; }
double m21() const { return m_matrix[1][0]; }
void setM21(double f) { m_matrix[1][0] = f; }
double m22() const { return m_matrix[1][1]; }
void setM22(double f) { m_matrix[1][1] = f; }
double m23() const { return m_matrix[1][2]; }
void setM23(double f) { m_matrix[1][2] = f; }
double m24() const { return m_matrix[1][3]; }
void setM24(double f) { m_matrix[1][3] = f; }
double m31() const { return m_matrix[2][0]; }
void setM31(double f) { m_matrix[2][0] = f; }
double m32() const { return m_matrix[2][1]; }
void setM32(double f) { m_matrix[2][1] = f; }
double m33() const { return m_matrix[2][2]; }
void setM33(double f) { m_matrix[2][2] = f; }
double m34() const { return m_matrix[2][3]; }
void setM34(double f) { m_matrix[2][3] = f; }
double m41() const { return m_matrix[3][0]; }
void setM41(double f) { m_matrix[3][0] = f; }
double m42() const { return m_matrix[3][1]; }
void setM42(double f) { m_matrix[3][1] = f; }
double m43() const { return m_matrix[3][2]; }
void setM43(double f) { m_matrix[3][2] = f; }
double m44() const { return m_matrix[3][3]; }
void setM44(double f) { m_matrix[3][3] = f; }
double a() const { return m_matrix[0][0]; }
void setA(double a) { m_matrix[0][0] = a; }
double b() const { return m_matrix[0][1]; }
void setB(double b) { m_matrix[0][1] = b; }
double c() const { return m_matrix[1][0]; }
void setC(double c) { m_matrix[1][0] = c; }
double d() const { return m_matrix[1][1]; }
void setD(double d) { m_matrix[1][1] = d; }
double e() const { return m_matrix[3][0]; }
void setE(double e) { m_matrix[3][0] = e; }
double f() const { return m_matrix[3][1]; }
void setF(double f) { m_matrix[3][1] = f; }
// this = this * mat
TransformationMatrix& multiply(const TransformationMatrix& t) { return *this *= t; }
// this = mat * this
TransformationMatrix& multLeft(const TransformationMatrix& mat);
TransformationMatrix& scale(double);
TransformationMatrix& scaleNonUniform(double sx, double sy);
TransformationMatrix& scale3d(double sx, double sy, double sz);
TransformationMatrix& rotate(double d) { return rotate3d(0, 0, d); }
TransformationMatrix& rotateFromVector(double x, double y);
TransformationMatrix& rotate3d(double rx, double ry, double rz);
// The vector (x,y,z) is normalized if it's not already. A vector of
// (0,0,0) uses a vector of (0,0,1).
TransformationMatrix& rotate3d(double x, double y, double z, double angle);
TransformationMatrix& translate(double tx, double ty);
TransformationMatrix& translate3d(double tx, double ty, double tz);
// translation added with a post-multiply
TransformationMatrix& translateRight(double tx, double ty);
TransformationMatrix& translateRight3d(double tx, double ty, double tz);
TransformationMatrix& flipX();
TransformationMatrix& flipY();
TransformationMatrix& skew(double angleX, double angleY);
TransformationMatrix& skewX(double angle) { return skew(angle, 0); }
TransformationMatrix& skewY(double angle) { return skew(0, angle); }
TransformationMatrix& applyPerspective(double p);
bool hasPerspective() const { return m_matrix[2][3] != 0.0f; }
// returns a transformation that maps a rect to a rect
static TransformationMatrix rectToRect(const FloatRect&, const FloatRect&);
bool isInvertible() const;
// This method returns the identity matrix if it is not invertible.
// Use isInvertible() before calling this if you need to know.
TransformationMatrix inverse() const;
// decompose the matrix into its component parts
typedef struct {
double scaleX, scaleY, scaleZ;
double skewXY, skewXZ, skewYZ;
double quaternionX, quaternionY, quaternionZ, quaternionW;
double translateX, translateY, translateZ;
double perspectiveX, perspectiveY, perspectiveZ, perspectiveW;
} DecomposedType;
bool decompose(DecomposedType& decomp) const;
void recompose(const DecomposedType& decomp);
void blend(const TransformationMatrix& from, double progress);
bool isAffine() const
{
return (m13() == 0 && m14() == 0 && m23() == 0 && m24() == 0 &&
m31() == 0 && m32() == 0 && m33() == 1 && m34() == 0 && m43() == 0 && m44() == 1);
}
// Throw away the non-affine parts of the matrix (lossy!)
void makeAffine();
AffineTransform toAffineTransform() const;
bool operator==(const TransformationMatrix& m2) const
{
return (m_matrix[0][0] == m2.m_matrix[0][0] &&
m_matrix[0][1] == m2.m_matrix[0][1] &&
m_matrix[0][2] == m2.m_matrix[0][2] &&
m_matrix[0][3] == m2.m_matrix[0][3] &&
m_matrix[1][0] == m2.m_matrix[1][0] &&
m_matrix[1][1] == m2.m_matrix[1][1] &&
m_matrix[1][2] == m2.m_matrix[1][2] &&
m_matrix[1][3] == m2.m_matrix[1][3] &&
m_matrix[2][0] == m2.m_matrix[2][0] &&
m_matrix[2][1] == m2.m_matrix[2][1] &&
m_matrix[2][2] == m2.m_matrix[2][2] &&
m_matrix[2][3] == m2.m_matrix[2][3] &&
m_matrix[3][0] == m2.m_matrix[3][0] &&
m_matrix[3][1] == m2.m_matrix[3][1] &&
m_matrix[3][2] == m2.m_matrix[3][2] &&
m_matrix[3][3] == m2.m_matrix[3][3]);
}
bool operator!=(const TransformationMatrix& other) const { return !(*this == other); }
// *this = *this * t (i.e., a multRight)
TransformationMatrix& operator*=(const TransformationMatrix& t)
{
*this = *this * t;
return *this;
}
// result = *this * t (i.e., a multRight)
TransformationMatrix operator*(const TransformationMatrix& t) const
{
TransformationMatrix result = t;
result.multLeft(*this);
return result;
}
#if PLATFORM(CG)
operator CGAffineTransform() const;
#elif PLATFORM(CAIRO)
operator cairo_matrix_t() const;
#elif PLATFORM(OPENVG)
operator VGMatrix() const;
#elif PLATFORM(QT)
operator QTransform() const;
#elif PLATFORM(SKIA)
operator SkMatrix() const;
#elif PLATFORM(WX) && USE(WXGC)
operator wxGraphicsMatrix() const;
#endif
#if PLATFORM(WIN) || (PLATFORM(QT) && OS(WINDOWS)) || (PLATFORM(WX) && OS(WINDOWS))
operator XFORM() const;
#endif
bool isIdentityOrTranslation() const
{
return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0
&& m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0
&& m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0
&& m_matrix[3][3] == 1;
}
private:
// multiply passed 2D point by matrix (assume z=0)
void multVecMatrix(double x, double y, double& dstX, double& dstY) const;
// multiply passed 3D point by matrix
void multVecMatrix(double x, double y, double z, double& dstX, double& dstY, double& dstZ) const;
void setMatrix(const Matrix4 m)
{
if (m && m != m_matrix)
memcpy(m_matrix, m, sizeof(Matrix4));
}
Matrix4 m_matrix;
};
} // namespace WebCore
#endif // TransformationMatrix_h
|