1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
|
/*
* Copyright (C) 2009, 2010 University of Szeged
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY UNIVERSITY OF SZEGED ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL UNIVERSITY OF SZEGED OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef ARMAssembler_h
#define ARMAssembler_h
#if ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
#include "AssemblerBufferWithConstantPool.h"
#include <wtf/Assertions.h>
namespace JSC {
typedef uint32_t ARMWord;
namespace ARMRegisters {
typedef enum {
r0 = 0,
r1,
r2,
r3, S0 = r3,
r4,
r5,
r6,
r7,
r8, S1 = r8,
r9,
r10,
r11,
r12,
r13, sp = r13,
r14, lr = r14,
r15, pc = r15
} RegisterID;
typedef enum {
d0,
d1,
d2,
d3, SD0 = d3,
d4,
d5,
d6,
d7,
d8,
d9,
d10,
d11,
d12,
d13,
d14,
d15,
d16,
d17,
d18,
d19,
d20,
d21,
d22,
d23,
d24,
d25,
d26,
d27,
d28,
d29,
d30,
d31
} FPRegisterID;
} // namespace ARMRegisters
class ARMAssembler {
public:
typedef ARMRegisters::RegisterID RegisterID;
typedef ARMRegisters::FPRegisterID FPRegisterID;
typedef AssemblerBufferWithConstantPool<2048, 4, 4, ARMAssembler> ARMBuffer;
typedef SegmentedVector<AssemblerLabel, 64> Jumps;
ARMAssembler() { }
// ARM conditional constants
typedef enum {
EQ = 0x00000000, // Zero
NE = 0x10000000, // Non-zero
CS = 0x20000000,
CC = 0x30000000,
MI = 0x40000000,
PL = 0x50000000,
VS = 0x60000000,
VC = 0x70000000,
HI = 0x80000000,
LS = 0x90000000,
GE = 0xa0000000,
LT = 0xb0000000,
GT = 0xc0000000,
LE = 0xd0000000,
AL = 0xe0000000
} Condition;
// ARM instruction constants
enum {
AND = (0x0 << 21),
EOR = (0x1 << 21),
SUB = (0x2 << 21),
RSB = (0x3 << 21),
ADD = (0x4 << 21),
ADC = (0x5 << 21),
SBC = (0x6 << 21),
RSC = (0x7 << 21),
TST = (0x8 << 21),
TEQ = (0x9 << 21),
CMP = (0xa << 21),
CMN = (0xb << 21),
ORR = (0xc << 21),
MOV = (0xd << 21),
BIC = (0xe << 21),
MVN = (0xf << 21),
MUL = 0x00000090,
MULL = 0x00c00090,
VADD_F64 = 0x0e300b00,
VDIV_F64 = 0x0e800b00,
VSUB_F64 = 0x0e300b40,
VMUL_F64 = 0x0e200b00,
VCMP_F64 = 0x0eb40b40,
VSQRT_F64 = 0x0eb10bc0,
DTR = 0x05000000,
LDRH = 0x00100090,
STRH = 0x00000090,
STMDB = 0x09200000,
LDMIA = 0x08b00000,
FDTR = 0x0d000b00,
B = 0x0a000000,
BL = 0x0b000000,
#if WTF_ARM_ARCH_AT_LEAST(5) || defined(__ARM_ARCH_4T__)
BX = 0x012fff10,
#endif
VMOV_VFP = 0x0e000a10,
VMOV_ARM = 0x0e100a10,
VCVT_F64_S32 = 0x0eb80bc0,
VCVT_S32_F64 = 0x0ebd0b40,
VMRS_APSR = 0x0ef1fa10,
#if WTF_ARM_ARCH_AT_LEAST(5)
CLZ = 0x016f0f10,
BKPT = 0xe1200070,
BLX = 0x012fff30,
#endif
#if WTF_ARM_ARCH_AT_LEAST(7)
MOVW = 0x03000000,
MOVT = 0x03400000,
#endif
NOP = 0xe1a00000,
};
enum {
OP2_IMM = (1 << 25),
OP2_IMMh = (1 << 22),
OP2_INV_IMM = (1 << 26),
SET_CC = (1 << 20),
OP2_OFSREG = (1 << 25),
DT_UP = (1 << 23),
DT_BYTE = (1 << 22),
DT_WB = (1 << 21),
// This flag is inlcuded in LDR and STR
DT_PRE = (1 << 24),
HDT_UH = (1 << 5),
DT_LOAD = (1 << 20),
};
// Masks of ARM instructions
enum {
BRANCH_MASK = 0x00ffffff,
NONARM = 0xf0000000,
SDT_MASK = 0x0c000000,
SDT_OFFSET_MASK = 0xfff,
};
enum {
BOFFSET_MIN = -0x00800000,
BOFFSET_MAX = 0x007fffff,
SDT = 0x04000000,
};
enum {
padForAlign8 = 0x00,
padForAlign16 = 0x0000,
padForAlign32 = 0xe12fff7f // 'bkpt 0xffff' instruction.
};
static const ARMWord INVALID_IMM = 0xf0000000;
static const ARMWord InvalidBranchTarget = 0xffffffff;
static const int DefaultPrefetching = 2;
// Instruction formating
void emitInst(ARMWord op, int rd, int rn, ARMWord op2)
{
ASSERT(((op2 & ~OP2_IMM) <= 0xfff) || (((op2 & ~OP2_IMMh) <= 0xfff)));
m_buffer.putInt(op | RN(rn) | RD(rd) | op2);
}
void emitDoublePrecisionInst(ARMWord op, int dd, int dn, int dm)
{
ASSERT((dd >= 0 && dd <= 31) && (dn >= 0 && dn <= 31) && (dm >= 0 && dm <= 31));
m_buffer.putInt(op | ((dd & 0xf) << 12) | ((dd & 0x10) << (22 - 4))
| ((dn & 0xf) << 16) | ((dn & 0x10) << (7 - 4))
| (dm & 0xf) | ((dm & 0x10) << (5 - 4)));
}
void emitSinglePrecisionInst(ARMWord op, int sd, int sn, int sm)
{
ASSERT((sd >= 0 && sd <= 31) && (sn >= 0 && sn <= 31) && (sm >= 0 && sm <= 31));
m_buffer.putInt(op | ((sd >> 1) << 12) | ((sd & 0x1) << 22)
| ((sn >> 1) << 16) | ((sn & 0x1) << 7)
| (sm >> 1) | ((sm & 0x1) << 5));
}
void and_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | AND, rd, rn, op2);
}
void ands_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | AND | SET_CC, rd, rn, op2);
}
void eor_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | EOR, rd, rn, op2);
}
void eors_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | EOR | SET_CC, rd, rn, op2);
}
void sub_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | SUB, rd, rn, op2);
}
void subs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | SUB | SET_CC, rd, rn, op2);
}
void rsb_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | RSB, rd, rn, op2);
}
void rsbs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | RSB | SET_CC, rd, rn, op2);
}
void add_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ADD, rd, rn, op2);
}
void adds_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ADD | SET_CC, rd, rn, op2);
}
void adc_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ADC, rd, rn, op2);
}
void adcs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ADC | SET_CC, rd, rn, op2);
}
void sbc_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | SBC, rd, rn, op2);
}
void sbcs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | SBC | SET_CC, rd, rn, op2);
}
void rsc_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | RSC, rd, rn, op2);
}
void rscs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | RSC | SET_CC, rd, rn, op2);
}
void tst_r(int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | TST | SET_CC, 0, rn, op2);
}
void teq_r(int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | TEQ | SET_CC, 0, rn, op2);
}
void cmp_r(int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | CMP | SET_CC, 0, rn, op2);
}
void cmn_r(int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | CMN | SET_CC, 0, rn, op2);
}
void orr_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ORR, rd, rn, op2);
}
void orrs_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | ORR | SET_CC, rd, rn, op2);
}
void mov_r(int rd, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | MOV, rd, ARMRegisters::r0, op2);
}
#if WTF_ARM_ARCH_AT_LEAST(7)
void movw_r(int rd, ARMWord op2, Condition cc = AL)
{
ASSERT((op2 | 0xf0fff) == 0xf0fff);
m_buffer.putInt(static_cast<ARMWord>(cc) | MOVW | RD(rd) | op2);
}
void movt_r(int rd, ARMWord op2, Condition cc = AL)
{
ASSERT((op2 | 0xf0fff) == 0xf0fff);
m_buffer.putInt(static_cast<ARMWord>(cc) | MOVT | RD(rd) | op2);
}
#endif
void movs_r(int rd, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | MOV | SET_CC, rd, ARMRegisters::r0, op2);
}
void bic_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | BIC, rd, rn, op2);
}
void bics_r(int rd, int rn, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | BIC | SET_CC, rd, rn, op2);
}
void mvn_r(int rd, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | MVN, rd, ARMRegisters::r0, op2);
}
void mvns_r(int rd, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | MVN | SET_CC, rd, ARMRegisters::r0, op2);
}
void mul_r(int rd, int rn, int rm, Condition cc = AL)
{
m_buffer.putInt(static_cast<ARMWord>(cc) | MUL | RN(rd) | RS(rn) | RM(rm));
}
void muls_r(int rd, int rn, int rm, Condition cc = AL)
{
m_buffer.putInt(static_cast<ARMWord>(cc) | MUL | SET_CC | RN(rd) | RS(rn) | RM(rm));
}
void mull_r(int rdhi, int rdlo, int rn, int rm, Condition cc = AL)
{
m_buffer.putInt(static_cast<ARMWord>(cc) | MULL | RN(rdhi) | RD(rdlo) | RS(rn) | RM(rm));
}
void vadd_f64_r(int dd, int dn, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VADD_F64, dd, dn, dm);
}
void vdiv_f64_r(int dd, int dn, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VDIV_F64, dd, dn, dm);
}
void vsub_f64_r(int dd, int dn, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VSUB_F64, dd, dn, dm);
}
void vmul_f64_r(int dd, int dn, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VMUL_F64, dd, dn, dm);
}
void vcmp_f64_r(int dd, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCMP_F64, dd, 0, dm);
}
void vsqrt_f64_r(int dd, int dm, Condition cc = AL)
{
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VSQRT_F64, dd, 0, dm);
}
void ldr_imm(int rd, ARMWord imm, Condition cc = AL)
{
m_buffer.putIntWithConstantInt(static_cast<ARMWord>(cc) | DTR | DT_LOAD | DT_UP | RN(ARMRegisters::pc) | RD(rd), imm, true);
}
void ldr_un_imm(int rd, ARMWord imm, Condition cc = AL)
{
m_buffer.putIntWithConstantInt(static_cast<ARMWord>(cc) | DTR | DT_LOAD | DT_UP | RN(ARMRegisters::pc) | RD(rd), imm);
}
void dtr_u(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0) | DT_UP, rd, rb, op2);
}
void dtr_ur(bool isLoad, int rd, int rb, int rm, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0) | DT_UP | OP2_OFSREG, rd, rb, rm);
}
void dtr_d(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0), rd, rb, op2);
}
void dtr_dr(bool isLoad, int rd, int rb, int rm, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | DTR | (isLoad ? DT_LOAD : 0) | OP2_OFSREG, rd, rb, rm);
}
void ldrh_r(int rd, int rn, int rm, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | LDRH | HDT_UH | DT_UP | DT_PRE, rd, rn, rm);
}
void ldrh_d(int rd, int rb, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | LDRH | HDT_UH | DT_PRE, rd, rb, op2);
}
void ldrh_u(int rd, int rb, ARMWord op2, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | LDRH | HDT_UH | DT_UP | DT_PRE, rd, rb, op2);
}
void strh_r(int rn, int rm, int rd, Condition cc = AL)
{
emitInst(static_cast<ARMWord>(cc) | STRH | HDT_UH | DT_UP | DT_PRE, rd, rn, rm);
}
void fdtr_u(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL)
{
ASSERT(op2 <= 0xff);
emitInst(static_cast<ARMWord>(cc) | FDTR | DT_UP | (isLoad ? DT_LOAD : 0), rd, rb, op2);
}
void fdtr_d(bool isLoad, int rd, int rb, ARMWord op2, Condition cc = AL)
{
ASSERT(op2 <= 0xff);
emitInst(static_cast<ARMWord>(cc) | FDTR | (isLoad ? DT_LOAD : 0), rd, rb, op2);
}
void push_r(int reg, Condition cc = AL)
{
ASSERT(ARMWord(reg) <= 0xf);
m_buffer.putInt(cc | DTR | DT_WB | RN(ARMRegisters::sp) | RD(reg) | 0x4);
}
void pop_r(int reg, Condition cc = AL)
{
ASSERT(ARMWord(reg) <= 0xf);
m_buffer.putInt(cc | (DTR ^ DT_PRE) | DT_LOAD | DT_UP | RN(ARMRegisters::sp) | RD(reg) | 0x4);
}
inline void poke_r(int reg, Condition cc = AL)
{
dtr_d(false, ARMRegisters::sp, 0, reg, cc);
}
inline void peek_r(int reg, Condition cc = AL)
{
dtr_u(true, reg, ARMRegisters::sp, 0, cc);
}
void vmov_vfp_r(int sn, int rt, Condition cc = AL)
{
ASSERT(rt <= 15);
emitSinglePrecisionInst(static_cast<ARMWord>(cc) | VMOV_VFP, rt << 1, sn, 0);
}
void vmov_arm_r(int rt, int sn, Condition cc = AL)
{
ASSERT(rt <= 15);
emitSinglePrecisionInst(static_cast<ARMWord>(cc) | VMOV_ARM, rt << 1, sn, 0);
}
void vcvt_f64_s32_r(int dd, int sm, Condition cc = AL)
{
ASSERT(!(sm & 0x1)); // sm must be divisible by 2
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCVT_F64_S32, dd, 0, (sm >> 1));
}
void vcvt_s32_f64_r(int sd, int dm, Condition cc = AL)
{
ASSERT(!(sd & 0x1)); // sd must be divisible by 2
emitDoublePrecisionInst(static_cast<ARMWord>(cc) | VCVT_S32_F64, (sd >> 1), 0, dm);
}
void vmrs_apsr(Condition cc = AL)
{
m_buffer.putInt(static_cast<ARMWord>(cc) | VMRS_APSR);
}
#if WTF_ARM_ARCH_AT_LEAST(5)
void clz_r(int rd, int rm, Condition cc = AL)
{
m_buffer.putInt(static_cast<ARMWord>(cc) | CLZ | RD(rd) | RM(rm));
}
#endif
void bkpt(ARMWord value)
{
#if WTF_ARM_ARCH_AT_LEAST(5)
m_buffer.putInt(BKPT | ((value & 0xff0) << 4) | (value & 0xf));
#else
// Cannot access to Zero memory address
dtr_dr(true, ARMRegisters::S0, ARMRegisters::S0, ARMRegisters::S0);
#endif
}
void nop()
{
m_buffer.putInt(NOP);
}
void bx(int rm, Condition cc = AL)
{
#if WTF_ARM_ARCH_AT_LEAST(5) || defined(__ARM_ARCH_4T__)
emitInst(static_cast<ARMWord>(cc) | BX, 0, 0, RM(rm));
#else
mov_r(ARMRegisters::pc, RM(rm), cc);
#endif
}
AssemblerLabel blx(int rm, Condition cc = AL)
{
#if WTF_ARM_ARCH_AT_LEAST(5)
emitInst(static_cast<ARMWord>(cc) | BLX, 0, 0, RM(rm));
#else
ASSERT(rm != 14);
ensureSpace(2 * sizeof(ARMWord), 0);
mov_r(ARMRegisters::lr, ARMRegisters::pc, cc);
bx(rm, cc);
#endif
return m_buffer.label();
}
static ARMWord lsl(int reg, ARMWord value)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(value <= 0x1f);
return reg | (value << 7) | 0x00;
}
static ARMWord lsr(int reg, ARMWord value)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(value <= 0x1f);
return reg | (value << 7) | 0x20;
}
static ARMWord asr(int reg, ARMWord value)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(value <= 0x1f);
return reg | (value << 7) | 0x40;
}
static ARMWord lsl_r(int reg, int shiftReg)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(shiftReg <= ARMRegisters::pc);
return reg | (shiftReg << 8) | 0x10;
}
static ARMWord lsr_r(int reg, int shiftReg)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(shiftReg <= ARMRegisters::pc);
return reg | (shiftReg << 8) | 0x30;
}
static ARMWord asr_r(int reg, int shiftReg)
{
ASSERT(reg <= ARMRegisters::pc);
ASSERT(shiftReg <= ARMRegisters::pc);
return reg | (shiftReg << 8) | 0x50;
}
// General helpers
size_t codeSize() const
{
return m_buffer.codeSize();
}
void ensureSpace(int insnSpace, int constSpace)
{
m_buffer.ensureSpace(insnSpace, constSpace);
}
int sizeOfConstantPool()
{
return m_buffer.sizeOfConstantPool();
}
AssemblerLabel label()
{
m_buffer.ensureSpaceForAnyOneInstruction();
return m_buffer.label();
}
AssemblerLabel align(int alignment)
{
while (!m_buffer.isAligned(alignment))
mov_r(ARMRegisters::r0, ARMRegisters::r0);
return label();
}
AssemblerLabel loadBranchTarget(int rd, Condition cc = AL, int useConstantPool = 0)
{
ensureSpace(sizeof(ARMWord), sizeof(ARMWord));
m_jumps.append(m_buffer.codeSize() | (useConstantPool & 0x1));
ldr_un_imm(rd, InvalidBranchTarget, cc);
return m_buffer.label();
}
AssemblerLabel jmp(Condition cc = AL, int useConstantPool = 0)
{
return loadBranchTarget(ARMRegisters::pc, cc, useConstantPool);
}
PassRefPtr<ExecutableMemoryHandle> executableCopy(JSGlobalData&, void* ownerUID);
unsigned debugOffset() { return m_buffer.debugOffset(); }
// Patching helpers
static ARMWord* getLdrImmAddress(ARMWord* insn)
{
#if WTF_ARM_ARCH_AT_LEAST(5)
// Check for call
if ((*insn & 0x0f7f0000) != 0x051f0000) {
// Must be BLX
ASSERT((*insn & 0x012fff30) == 0x012fff30);
insn--;
}
#endif
// Must be an ldr ..., [pc +/- imm]
ASSERT((*insn & 0x0f7f0000) == 0x051f0000);
ARMWord addr = reinterpret_cast<ARMWord>(insn) + DefaultPrefetching * sizeof(ARMWord);
if (*insn & DT_UP)
return reinterpret_cast<ARMWord*>(addr + (*insn & SDT_OFFSET_MASK));
return reinterpret_cast<ARMWord*>(addr - (*insn & SDT_OFFSET_MASK));
}
static ARMWord* getLdrImmAddressOnPool(ARMWord* insn, uint32_t* constPool)
{
// Must be an ldr ..., [pc +/- imm]
ASSERT((*insn & 0x0f7f0000) == 0x051f0000);
if (*insn & 0x1)
return reinterpret_cast<ARMWord*>(constPool + ((*insn & SDT_OFFSET_MASK) >> 1));
return getLdrImmAddress(insn);
}
static void patchPointerInternal(intptr_t from, void* to)
{
ARMWord* insn = reinterpret_cast<ARMWord*>(from);
ARMWord* addr = getLdrImmAddress(insn);
*addr = reinterpret_cast<ARMWord>(to);
}
static ARMWord patchConstantPoolLoad(ARMWord load, ARMWord value)
{
value = (value << 1) + 1;
ASSERT(!(value & ~0xfff));
return (load & ~0xfff) | value;
}
static void patchConstantPoolLoad(void* loadAddr, void* constPoolAddr);
// Read pointers
static void* readPointer(void* from)
{
ARMWord* insn = reinterpret_cast<ARMWord*>(from);
ARMWord* addr = getLdrImmAddress(insn);
return *reinterpret_cast<void**>(addr);
}
// Patch pointers
static void linkPointer(void* code, AssemblerLabel from, void* to)
{
patchPointerInternal(reinterpret_cast<intptr_t>(code) + from.m_offset, to);
}
static void repatchInt32(void* from, int32_t to)
{
patchPointerInternal(reinterpret_cast<intptr_t>(from), reinterpret_cast<void*>(to));
}
static void repatchCompact(void* where, int32_t value)
{
repatchInt32(where, value);
}
static void repatchPointer(void* from, void* to)
{
patchPointerInternal(reinterpret_cast<intptr_t>(from), to);
}
// Linkers
static intptr_t getAbsoluteJumpAddress(void* base, int offset = 0)
{
return reinterpret_cast<intptr_t>(base) + offset - sizeof(ARMWord);
}
void linkJump(AssemblerLabel from, AssemblerLabel to)
{
ARMWord* insn = reinterpret_cast<ARMWord*>(getAbsoluteJumpAddress(m_buffer.data(), from.m_offset));
ARMWord* addr = getLdrImmAddressOnPool(insn, m_buffer.poolAddress());
*addr = static_cast<ARMWord>(to.m_offset);
}
static void linkJump(void* code, AssemblerLabel from, void* to)
{
patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
}
static void relinkJump(void* from, void* to)
{
patchPointerInternal(getAbsoluteJumpAddress(from), to);
}
static void linkCall(void* code, AssemblerLabel from, void* to)
{
patchPointerInternal(getAbsoluteJumpAddress(code, from.m_offset), to);
}
static void relinkCall(void* from, void* to)
{
patchPointerInternal(getAbsoluteJumpAddress(from), to);
}
static void* readCallTarget(void* from)
{
return reinterpret_cast<void*>(readPointer(reinterpret_cast<void*>(getAbsoluteJumpAddress(from))));
}
// Address operations
static void* getRelocatedAddress(void* code, AssemblerLabel label)
{
return reinterpret_cast<void*>(reinterpret_cast<char*>(code) + label.m_offset);
}
// Address differences
static int getDifferenceBetweenLabels(AssemblerLabel a, AssemblerLabel b)
{
return b.m_offset - a.m_offset;
}
static unsigned getCallReturnOffset(AssemblerLabel call)
{
return call.m_offset;
}
// Handle immediates
static ARMWord getOp2Byte(ARMWord imm)
{
ASSERT(imm <= 0xff);
return OP2_IMMh | (imm & 0x0f) | ((imm & 0xf0) << 4) ;
}
static ARMWord getOp2(ARMWord imm);
#if WTF_ARM_ARCH_AT_LEAST(7)
static ARMWord getImm16Op2(ARMWord imm)
{
if (imm <= 0xffff)
return (imm & 0xf000) << 4 | (imm & 0xfff);
return INVALID_IMM;
}
#endif
ARMWord getImm(ARMWord imm, int tmpReg, bool invert = false);
void moveImm(ARMWord imm, int dest);
ARMWord encodeComplexImm(ARMWord imm, int dest);
ARMWord getOffsetForHalfwordDataTransfer(ARMWord imm, int tmpReg)
{
// Encode immediate data in the instruction if it is possible
if (imm <= 0xff)
return getOp2Byte(imm);
// Otherwise, store the data in a temporary register
return encodeComplexImm(imm, tmpReg);
}
// Memory load/store helpers
void dataTransfer32(bool isLoad, RegisterID srcDst, RegisterID base, int32_t offset, bool bytes = false);
void baseIndexTransfer32(bool isLoad, RegisterID srcDst, RegisterID base, RegisterID index, int scale, int32_t offset, bool bytes = false);
void doubleTransfer(bool isLoad, FPRegisterID srcDst, RegisterID base, int32_t offset);
// Constant pool hnadlers
static ARMWord placeConstantPoolBarrier(int offset)
{
offset = (offset - sizeof(ARMWord)) >> 2;
ASSERT((offset <= BOFFSET_MAX && offset >= BOFFSET_MIN));
return AL | B | (offset & BRANCH_MASK);
}
private:
ARMWord RM(int reg)
{
ASSERT(reg <= ARMRegisters::pc);
return reg;
}
ARMWord RS(int reg)
{
ASSERT(reg <= ARMRegisters::pc);
return reg << 8;
}
ARMWord RD(int reg)
{
ASSERT(reg <= ARMRegisters::pc);
return reg << 12;
}
ARMWord RN(int reg)
{
ASSERT(reg <= ARMRegisters::pc);
return reg << 16;
}
static ARMWord getConditionalField(ARMWord i)
{
return i & 0xf0000000;
}
int genInt(int reg, ARMWord imm, bool positive);
ARMBuffer m_buffer;
Jumps m_jumps;
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER) && CPU(ARM_TRADITIONAL)
#endif // ARMAssembler_h
|