1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
|
/*
* Copyright (C) 2008, 2009 Apple Inc. All rights reserved.
* Copyright (C) 2008 Cameron Zwarich <cwzwarich@uwaterloo.ca>
* Copyright (C) 2012 Igalia, S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef BytecodeGenerator_h
#define BytecodeGenerator_h
#include "CodeBlock.h"
#include "HashTraits.h"
#include "Instruction.h"
#include "Label.h"
#include "LabelScope.h"
#include "Interpreter.h"
#include "RegisterID.h"
#include "SymbolTable.h"
#include "Debugger.h"
#include "Nodes.h"
#include <wtf/PassRefPtr.h>
#include <wtf/SegmentedVector.h>
#include <wtf/Vector.h>
namespace JSC {
class Identifier;
class ScopeChainNode;
class CallArguments {
public:
CallArguments(BytecodeGenerator& generator, ArgumentsNode* argumentsNode);
RegisterID* thisRegister() { return m_argv[0].get(); }
RegisterID* argumentRegister(unsigned i) { return m_argv[i + 1].get(); }
unsigned registerOffset() { return m_argv.last()->index() + CallFrame::offsetFor(argumentCountIncludingThis()); }
unsigned argumentCountIncludingThis() { return m_argv.size(); }
RegisterID* profileHookRegister() { return m_profileHookRegister.get(); }
ArgumentsNode* argumentsNode() { return m_argumentsNode; }
private:
void newArgument(BytecodeGenerator&);
RefPtr<RegisterID> m_profileHookRegister;
ArgumentsNode* m_argumentsNode;
Vector<RefPtr<RegisterID>, 8> m_argv;
};
struct FinallyContext {
Label* finallyAddr;
RegisterID* retAddrDst;
};
struct ControlFlowContext {
bool isFinallyBlock;
FinallyContext finallyContext;
};
struct ForInContext {
RefPtr<RegisterID> expectedSubscriptRegister;
RefPtr<RegisterID> iterRegister;
RefPtr<RegisterID> indexRegister;
RefPtr<RegisterID> propertyRegister;
};
class ResolveResult {
public:
enum Flags {
// The property is locally bound, in a register.
RegisterFlag = 0x1,
// We need to traverse the scope chain at runtime, checking for
// non-strict eval and/or `with' nodes.
DynamicFlag = 0x2,
// The property was resolved to a definite location, and the
// identifier is not needed any more.
StaticFlag = 0x4,
// Once we have the base object, the property will be located at a
// known index.
IndexedFlag = 0x8,
// Skip some number of objects in the scope chain, given by "depth".
ScopedFlag = 0x10,
// The resolved binding is immutable.
ReadOnlyFlag = 0x20,
// The base object is the global object.
GlobalFlag = 0x40
};
enum Type {
// The property is local, and stored in a register.
Register = RegisterFlag | StaticFlag,
// A read-only local, created by "const".
ReadOnlyRegister = RegisterFlag | ReadOnlyFlag | StaticFlag,
// The property is statically scoped free variable. Its coordinates
// are in "index" and "depth".
Lexical = IndexedFlag | ScopedFlag | StaticFlag,
// A read-only Lexical, created by "const".
ReadOnlyLexical = IndexedFlag | ScopedFlag | ReadOnlyFlag | StaticFlag,
// The property was not bound lexically, so at runtime we should
// look directly in the global object.
Global = GlobalFlag,
// Like Global, but we could actually resolve the property to a
// DontDelete property in the global object, for instance, any
// binding created with "var" at the top level. At runtime we'll
// just index into the global object.
IndexedGlobal = IndexedFlag | GlobalFlag | StaticFlag,
// Like IndexedGlobal, but the property is also read-only, like NaN,
// Infinity, or undefined.
ReadOnlyIndexedGlobal = IndexedFlag | ReadOnlyFlag | GlobalFlag | StaticFlag,
// The property could not be resolved statically, due to the
// presence of `with' blocks. At runtime we'll have to walk the
// scope chain. ScopedFlag is set to indicate that "depth" will
// hold some number of nodes to skip in the scope chain, before
// beginning the search.
Dynamic = DynamicFlag | ScopedFlag,
// The property was located as a statically scoped free variable,
// but while traversing the scope chain, there was an intermediate
// activation that used non-strict `eval'. At runtime we'll have to
// check for the absence of this property in those intervening
// scopes.
DynamicLexical = DynamicFlag | IndexedFlag | ScopedFlag,
// Like ReadOnlyLexical, but with intervening non-strict `eval'.
DynamicReadOnlyLexical = DynamicFlag | IndexedFlag | ScopedFlag | ReadOnlyFlag,
// Like Global, but with intervening non-strict `eval'. As with
// Dynamic, ScopeFlag is set to indicate that "depth" does indeed
// store a number of frames to skip before doing the dynamic checks.
DynamicGlobal = DynamicFlag | GlobalFlag | ScopedFlag,
// Like IndexedGlobal, but with intervening non-strict `eval'.
DynamicIndexedGlobal = DynamicFlag | IndexedFlag | GlobalFlag | ScopedFlag,
// Like ReadOnlyIndexedGlobal, but with intervening non-strict
// `eval'.
DynamicReadOnlyIndexedGlobal = DynamicFlag | IndexedFlag | ReadOnlyFlag | GlobalFlag | ScopedFlag,
};
static ResolveResult registerResolve(RegisterID *local, unsigned flags)
{
return ResolveResult(Register | flags, local, missingSymbolMarker(), 0, 0);
}
static ResolveResult dynamicResolve(size_t depth)
{
return ResolveResult(Dynamic, 0, missingSymbolMarker(), depth, 0);
}
static ResolveResult lexicalResolve(int index, size_t depth, unsigned flags)
{
unsigned type = (flags & DynamicFlag) ? DynamicLexical : Lexical;
return ResolveResult(type | flags, 0, index, depth, 0);
}
static ResolveResult indexedGlobalResolve(int index, JSObject *globalObject, unsigned flags)
{
return ResolveResult(IndexedGlobal | flags, 0, index, 0, globalObject);
}
static ResolveResult dynamicIndexedGlobalResolve(int index, size_t depth, JSObject *globalObject, unsigned flags)
{
return ResolveResult(DynamicIndexedGlobal | flags, 0, index, depth, globalObject);
}
static ResolveResult globalResolve(JSObject *globalObject)
{
return ResolveResult(Global, 0, missingSymbolMarker(), 0, globalObject);
}
static ResolveResult dynamicGlobalResolve(size_t dynamicDepth, JSObject *globalObject)
{
return ResolveResult(DynamicGlobal, 0, missingSymbolMarker(), dynamicDepth, globalObject);
}
unsigned type() const { return m_type; }
// Returns the register corresponding to a local variable, or 0 if no
// such register exists. Registers returned by ResolveResult::local() do
// not require explicit reference counting.
RegisterID* local() const { return m_local; }
int index() const { ASSERT (isIndexed() || isRegister()); return m_index; }
size_t depth() const { ASSERT(isScoped()); return m_depth; }
JSObject* globalObject() const { ASSERT(isGlobal()); ASSERT(m_globalObject); return m_globalObject; }
bool isRegister() const { return m_type & RegisterFlag; }
bool isDynamic() const { return m_type & DynamicFlag; }
bool isStatic() const { return m_type & StaticFlag; }
bool isIndexed() const { return m_type & IndexedFlag; }
bool isScoped() const { return m_type & ScopedFlag; }
bool isReadOnly() const { return (m_type & ReadOnlyFlag) && !isDynamic(); }
bool isGlobal() const { return m_type & GlobalFlag; }
private:
ResolveResult(unsigned type, RegisterID* local, int index, size_t depth, JSObject* globalObject)
: m_type(type)
, m_index(index)
, m_local(local)
, m_depth(depth)
, m_globalObject(globalObject)
{
#ifndef NDEBUG
checkValidity();
#endif
}
#ifndef NDEBUG
void checkValidity();
#endif
unsigned m_type;
int m_index; // Index in scope, if IndexedFlag is set
RegisterID* m_local; // Local register, if RegisterFlag is set
size_t m_depth; // Depth in scope chain, if ScopedFlag is set
JSObject* m_globalObject; // If GlobalFlag is set.
};
class BytecodeGenerator {
WTF_MAKE_FAST_ALLOCATED;
public:
typedef DeclarationStacks::VarStack VarStack;
typedef DeclarationStacks::FunctionStack FunctionStack;
JS_EXPORT_PRIVATE static void setDumpsGeneratedCode(bool dumpsGeneratedCode);
static bool dumpsGeneratedCode();
BytecodeGenerator(ProgramNode*, ScopeChainNode*, SymbolTable*, ProgramCodeBlock*, CompilationKind);
BytecodeGenerator(FunctionBodyNode*, ScopeChainNode*, SymbolTable*, CodeBlock*, CompilationKind);
BytecodeGenerator(EvalNode*, ScopeChainNode*, SymbolTable*, EvalCodeBlock*, CompilationKind);
~BytecodeGenerator();
JSGlobalData* globalData() const { return m_globalData; }
const CommonIdentifiers& propertyNames() const { return *m_globalData->propertyNames; }
bool isConstructor() { return m_codeBlock->m_isConstructor; }
JSObject* generate();
bool isArgumentNumber(const Identifier&, int);
void setIsNumericCompareFunction(bool isNumericCompareFunction);
bool willResolveToArguments(const Identifier&);
RegisterID* uncheckedRegisterForArguments();
// Resolve an identifier, given the current compile-time scope chain.
ResolveResult resolve(const Identifier&);
// Behaves as resolve does, but ignores dynamic scope as
// dynamic scope should not interfere with const initialisation
ResolveResult resolveConstDecl(const Identifier&);
// Returns the register storing "this"
RegisterID* thisRegister() { return &m_thisRegister; }
// Returns the next available temporary register. Registers returned by
// newTemporary require a modified form of reference counting: any
// register with a refcount of 0 is considered "available", meaning that
// the next instruction may overwrite it.
RegisterID* newTemporary();
RegisterID* highestUsedRegister();
// The same as newTemporary(), but this function returns "suggestion" if
// "suggestion" is a temporary. This function is helpful in situations
// where you've put "suggestion" in a RefPtr, but you'd like to allow
// the next instruction to overwrite it anyway.
RegisterID* newTemporaryOr(RegisterID* suggestion) { return suggestion->isTemporary() ? suggestion : newTemporary(); }
// Functions for handling of dst register
RegisterID* ignoredResult() { return &m_ignoredResultRegister; }
// Returns a place to write intermediate values of an operation
// which reuses dst if it is safe to do so.
RegisterID* tempDestination(RegisterID* dst)
{
return (dst && dst != ignoredResult() && dst->isTemporary()) ? dst : newTemporary();
}
// Returns the place to write the final output of an operation.
RegisterID* finalDestination(RegisterID* originalDst, RegisterID* tempDst = 0)
{
if (originalDst && originalDst != ignoredResult())
return originalDst;
ASSERT(tempDst != ignoredResult());
if (tempDst && tempDst->isTemporary())
return tempDst;
return newTemporary();
}
// Returns the place to write the final output of an operation.
RegisterID* finalDestinationOrIgnored(RegisterID* originalDst, RegisterID* tempDst = 0)
{
if (originalDst)
return originalDst;
ASSERT(tempDst != ignoredResult());
if (tempDst && tempDst->isTemporary())
return tempDst;
return newTemporary();
}
RegisterID* destinationForAssignResult(RegisterID* dst)
{
if (dst && dst != ignoredResult() && m_codeBlock->needsFullScopeChain())
return dst->isTemporary() ? dst : newTemporary();
return 0;
}
// Moves src to dst if dst is not null and is different from src, otherwise just returns src.
RegisterID* moveToDestinationIfNeeded(RegisterID* dst, RegisterID* src)
{
return dst == ignoredResult() ? 0 : (dst && dst != src) ? emitMove(dst, src) : src;
}
PassRefPtr<LabelScope> newLabelScope(LabelScope::Type, const Identifier* = 0);
PassRefPtr<Label> newLabel();
// The emitNode functions are just syntactic sugar for calling
// Node::emitCode. These functions accept a 0 for the register,
// meaning that the node should allocate a register, or ignoredResult(),
// meaning that the node need not put the result in a register.
// Other emit functions do not accept 0 or ignoredResult().
RegisterID* emitNode(RegisterID* dst, Node* n)
{
// Node::emitCode assumes that dst, if provided, is either a local or a referenced temporary.
ASSERT(!dst || dst == ignoredResult() || !dst->isTemporary() || dst->refCount());
addLineInfo(n->lineNo());
return m_stack.recursionCheck()
? n->emitBytecode(*this, dst)
: emitThrowExpressionTooDeepException();
}
RegisterID* emitNode(Node* n)
{
return emitNode(0, n);
}
void emitNodeInConditionContext(ExpressionNode* n, Label* trueTarget, Label* falseTarget, bool fallThroughMeansTrue)
{
addLineInfo(n->lineNo());
if (m_stack.recursionCheck())
n->emitBytecodeInConditionContext(*this, trueTarget, falseTarget, fallThroughMeansTrue);
else
emitThrowExpressionTooDeepException();
}
void emitExpressionInfo(unsigned divot, unsigned startOffset, unsigned endOffset)
{
if (!m_shouldEmitRichSourceInfo)
return;
divot -= m_codeBlock->sourceOffset();
if (divot > ExpressionRangeInfo::MaxDivot) {
// Overflow has occurred, we can only give line number info for errors for this region
divot = 0;
startOffset = 0;
endOffset = 0;
} else if (startOffset > ExpressionRangeInfo::MaxOffset) {
// If the start offset is out of bounds we clear both offsets
// so we only get the divot marker. Error message will have to be reduced
// to line and column number.
startOffset = 0;
endOffset = 0;
} else if (endOffset > ExpressionRangeInfo::MaxOffset) {
// The end offset is only used for additional context, and is much more likely
// to overflow (eg. function call arguments) so we are willing to drop it without
// dropping the rest of the range.
endOffset = 0;
}
ExpressionRangeInfo info;
info.instructionOffset = instructions().size();
info.divotPoint = divot;
info.startOffset = startOffset;
info.endOffset = endOffset;
m_codeBlock->addExpressionInfo(info);
}
ALWAYS_INLINE bool leftHandSideNeedsCopy(bool rightHasAssignments, bool rightIsPure)
{
return (m_codeType != FunctionCode || m_codeBlock->needsFullScopeChain() || rightHasAssignments) && !rightIsPure;
}
ALWAYS_INLINE PassRefPtr<RegisterID> emitNodeForLeftHandSide(ExpressionNode* n, bool rightHasAssignments, bool rightIsPure)
{
if (leftHandSideNeedsCopy(rightHasAssignments, rightIsPure)) {
PassRefPtr<RegisterID> dst = newTemporary();
emitNode(dst.get(), n);
return dst;
}
return emitNode(n);
}
RegisterID* emitLoad(RegisterID* dst, bool);
RegisterID* emitLoad(RegisterID* dst, double);
RegisterID* emitLoad(RegisterID* dst, const Identifier&);
RegisterID* emitLoad(RegisterID* dst, JSValue);
RegisterID* emitUnaryOp(OpcodeID, RegisterID* dst, RegisterID* src);
RegisterID* emitBinaryOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2, OperandTypes);
RegisterID* emitEqualityOp(OpcodeID, RegisterID* dst, RegisterID* src1, RegisterID* src2);
RegisterID* emitUnaryNoDstOp(OpcodeID, RegisterID* src);
RegisterID* emitNewObject(RegisterID* dst);
RegisterID* emitNewArray(RegisterID* dst, ElementNode*, unsigned length); // stops at first elision
RegisterID* emitNewFunction(RegisterID* dst, FunctionBodyNode* body);
RegisterID* emitLazyNewFunction(RegisterID* dst, FunctionBodyNode* body);
RegisterID* emitNewFunctionInternal(RegisterID* dst, unsigned index, bool shouldNullCheck);
RegisterID* emitNewFunctionExpression(RegisterID* dst, FuncExprNode* func);
RegisterID* emitNewRegExp(RegisterID* dst, RegExp*);
RegisterID* emitMove(RegisterID* dst, RegisterID* src);
RegisterID* emitToJSNumber(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_to_jsnumber, dst, src); }
RegisterID* emitPreInc(RegisterID* srcDst);
RegisterID* emitPreDec(RegisterID* srcDst);
RegisterID* emitPostInc(RegisterID* dst, RegisterID* srcDst);
RegisterID* emitPostDec(RegisterID* dst, RegisterID* srcDst);
void emitCheckHasInstance(RegisterID* base);
RegisterID* emitInstanceOf(RegisterID* dst, RegisterID* value, RegisterID* base, RegisterID* basePrototype);
RegisterID* emitTypeOf(RegisterID* dst, RegisterID* src) { return emitUnaryOp(op_typeof, dst, src); }
RegisterID* emitIn(RegisterID* dst, RegisterID* property, RegisterID* base) { return emitBinaryOp(op_in, dst, property, base, OperandTypes()); }
RegisterID* emitGetStaticVar(RegisterID* dst, const ResolveResult&);
RegisterID* emitPutStaticVar(const ResolveResult&, RegisterID* value);
RegisterID* emitResolve(RegisterID* dst, const ResolveResult&, const Identifier& property);
RegisterID* emitResolveBase(RegisterID* dst, const ResolveResult&, const Identifier& property);
RegisterID* emitResolveBaseForPut(RegisterID* dst, const ResolveResult&, const Identifier& property);
RegisterID* emitResolveWithBase(RegisterID* baseDst, RegisterID* propDst, const ResolveResult&, const Identifier& property);
RegisterID* emitResolveWithThis(RegisterID* baseDst, RegisterID* propDst, const ResolveResult&, const Identifier& property);
void emitMethodCheck();
RegisterID* emitGetById(RegisterID* dst, RegisterID* base, const Identifier& property);
RegisterID* emitGetArgumentsLength(RegisterID* dst, RegisterID* base);
RegisterID* emitPutById(RegisterID* base, const Identifier& property, RegisterID* value);
RegisterID* emitDirectPutById(RegisterID* base, const Identifier& property, RegisterID* value);
RegisterID* emitDeleteById(RegisterID* dst, RegisterID* base, const Identifier&);
RegisterID* emitGetByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitGetArgumentByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitPutByVal(RegisterID* base, RegisterID* property, RegisterID* value);
RegisterID* emitDeleteByVal(RegisterID* dst, RegisterID* base, RegisterID* property);
RegisterID* emitPutByIndex(RegisterID* base, unsigned index, RegisterID* value);
void emitPutGetterSetter(RegisterID* base, const Identifier& property, RegisterID* getter, RegisterID* setter);
RegisterID* emitCall(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
RegisterID* emitCallEval(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
RegisterID* emitCallVarargs(RegisterID* dst, RegisterID* func, RegisterID* thisRegister, RegisterID* arguments, RegisterID* firstFreeRegister, RegisterID* profileHookRegister, unsigned divot, unsigned startOffset, unsigned endOffset);
RegisterID* emitLoadVarargs(RegisterID* argCountDst, RegisterID* thisRegister, RegisterID* args);
RegisterID* emitReturn(RegisterID* src);
RegisterID* emitEnd(RegisterID* src) { return emitUnaryNoDstOp(op_end, src); }
RegisterID* emitConstruct(RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
RegisterID* emitStrcat(RegisterID* dst, RegisterID* src, int count);
void emitToPrimitive(RegisterID* dst, RegisterID* src);
PassRefPtr<Label> emitLabel(Label*);
void emitLoopHint();
PassRefPtr<Label> emitJump(Label* target);
PassRefPtr<Label> emitJumpIfTrue(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfFalse(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfNotFunctionCall(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpIfNotFunctionApply(RegisterID* cond, Label* target);
PassRefPtr<Label> emitJumpScopes(Label* target, int targetScopeDepth);
PassRefPtr<Label> emitJumpSubroutine(RegisterID* retAddrDst, Label*);
void emitSubroutineReturn(RegisterID* retAddrSrc);
RegisterID* emitGetPropertyNames(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, Label* breakTarget);
RegisterID* emitNextPropertyName(RegisterID* dst, RegisterID* base, RegisterID* i, RegisterID* size, RegisterID* iter, Label* target);
RegisterID* emitCatch(RegisterID*, Label* start, Label* end);
void emitThrow(RegisterID* exc)
{
m_usesExceptions = true;
emitUnaryNoDstOp(op_throw, exc);
}
void emitThrowReferenceError(const UString& message);
void emitPushNewScope(RegisterID* dst, const Identifier& property, RegisterID* value);
RegisterID* emitPushScope(RegisterID* scope);
void emitPopScope();
void emitDebugHook(DebugHookID, int firstLine, int lastLine);
int scopeDepth() { return m_dynamicScopeDepth + m_finallyDepth; }
bool hasFinaliser() { return m_finallyDepth != 0; }
void pushFinallyContext(Label* target, RegisterID* returnAddrDst);
void popFinallyContext();
void pushOptimisedForIn(RegisterID* expectedBase, RegisterID* iter, RegisterID* index, RegisterID* propertyRegister)
{
ForInContext context = { expectedBase, iter, index, propertyRegister };
m_forInContextStack.append(context);
}
void popOptimisedForIn()
{
m_forInContextStack.removeLast();
}
LabelScope* breakTarget(const Identifier&);
LabelScope* continueTarget(const Identifier&);
void beginSwitch(RegisterID*, SwitchInfo::SwitchType);
void endSwitch(uint32_t clauseCount, RefPtr<Label>*, ExpressionNode**, Label* defaultLabel, int32_t min, int32_t range);
CodeType codeType() const { return m_codeType; }
bool shouldEmitProfileHooks() { return m_shouldEmitProfileHooks; }
bool isStrictMode() const { return m_codeBlock->isStrictMode(); }
ScopeChainNode* scopeChain() const { return m_scopeChain.get(); }
private:
void emitOpcode(OpcodeID);
ValueProfile* emitProfiledOpcode(OpcodeID);
void retrieveLastBinaryOp(int& dstIndex, int& src1Index, int& src2Index);
void retrieveLastUnaryOp(int& dstIndex, int& srcIndex);
ALWAYS_INLINE void rewindBinaryOp();
ALWAYS_INLINE void rewindUnaryOp();
PassRefPtr<Label> emitComplexJumpScopes(Label* target, ControlFlowContext* topScope, ControlFlowContext* bottomScope);
typedef HashMap<double, JSValue> NumberMap;
typedef HashMap<StringImpl*, JSString*, IdentifierRepHash> IdentifierStringMap;
RegisterID* emitCall(OpcodeID, RegisterID* dst, RegisterID* func, CallArguments&, unsigned divot, unsigned startOffset, unsigned endOffset);
RegisterID* newRegister();
// Adds a var slot and maps it to the name ident in symbolTable().
RegisterID* addVar(const Identifier& ident, bool isConstant)
{
RegisterID* local;
addVar(ident, isConstant, local);
return local;
}
// Ditto. Returns true if a new RegisterID was added, false if a pre-existing RegisterID was re-used.
bool addVar(const Identifier&, bool isConstant, RegisterID*&);
// Adds an anonymous var slot. To give this slot a name, add it to symbolTable().
RegisterID* addVar()
{
++m_codeBlock->m_numVars;
return newRegister();
}
// Returns the index of the added var.
int addGlobalVar(const Identifier&, bool isConstant);
void addParameter(const Identifier&, int parameterIndex);
void preserveLastVar();
bool shouldAvoidResolveGlobal();
RegisterID& registerFor(int index)
{
if (index >= 0)
return m_calleeRegisters[index];
ASSERT(m_parameters.size());
return m_parameters[index + m_parameters.size() + RegisterFile::CallFrameHeaderSize];
}
unsigned addConstant(const Identifier&);
RegisterID* addConstantValue(JSValue);
unsigned addRegExp(RegExp*);
unsigned addConstantBuffer(unsigned length);
FunctionExecutable* makeFunction(ExecState* exec, FunctionBodyNode* body)
{
return FunctionExecutable::create(exec, body->ident(), body->inferredName(), body->source(), body->usesArguments(), body->parameters(), body->isStrictMode(), body->lineNo(), body->lastLine());
}
FunctionExecutable* makeFunction(JSGlobalData* globalData, FunctionBodyNode* body)
{
return FunctionExecutable::create(*globalData, body->ident(), body->inferredName(), body->source(), body->usesArguments(), body->parameters(), body->isStrictMode(), body->lineNo(), body->lastLine());
}
JSString* addStringConstant(const Identifier&);
void addLineInfo(unsigned lineNo)
{
#if !ENABLE(OPCODE_SAMPLING)
if (m_shouldEmitRichSourceInfo)
#endif
m_codeBlock->addLineInfo(instructions().size(), lineNo);
}
RegisterID* emitInitLazyRegister(RegisterID*);
Vector<Instruction>& instructions() { return m_codeBlock->instructions(); }
SymbolTable& symbolTable() { return *m_symbolTable; }
bool shouldOptimizeLocals()
{
if (m_dynamicScopeDepth)
return false;
if (m_codeType != FunctionCode)
return false;
return true;
}
bool canOptimizeNonLocals()
{
if (m_dynamicScopeDepth)
return false;
if (m_codeType == EvalCode)
return false;
if (m_codeType == FunctionCode && m_codeBlock->usesEval())
return false;
return true;
}
RegisterID* emitThrowExpressionTooDeepException();
void createArgumentsIfNecessary();
void createActivationIfNecessary();
RegisterID* createLazyRegisterIfNecessary(RegisterID*);
bool m_shouldEmitDebugHooks;
bool m_shouldEmitProfileHooks;
bool m_shouldEmitRichSourceInfo;
Strong<ScopeChainNode> m_scopeChain;
SymbolTable* m_symbolTable;
ScopeNode* m_scopeNode;
CodeBlock* m_codeBlock;
// Some of these objects keep pointers to one another. They are arranged
// to ensure a sane destruction order that avoids references to freed memory.
HashSet<RefPtr<StringImpl>, IdentifierRepHash> m_functions;
RegisterID m_ignoredResultRegister;
RegisterID m_thisRegister;
RegisterID* m_activationRegister;
SegmentedVector<RegisterID, 32> m_constantPoolRegisters;
SegmentedVector<RegisterID, 32> m_calleeRegisters;
SegmentedVector<RegisterID, 32> m_parameters;
SegmentedVector<Label, 32> m_labels;
SegmentedVector<LabelScope, 8> m_labelScopes;
RefPtr<RegisterID> m_lastVar;
int m_finallyDepth;
int m_dynamicScopeDepth;
int m_baseScopeDepth;
CodeType m_codeType;
Vector<ControlFlowContext> m_scopeContextStack;
Vector<SwitchInfo> m_switchContextStack;
Vector<ForInContext> m_forInContextStack;
int m_firstConstantIndex;
int m_nextConstantOffset;
unsigned m_globalConstantIndex;
int m_globalVarStorageOffset;
bool m_hasCreatedActivation;
int m_firstLazyFunction;
int m_lastLazyFunction;
HashMap<unsigned int, FunctionBodyNode*, WTF::IntHash<unsigned int>, WTF::UnsignedWithZeroKeyHashTraits<unsigned int> > m_lazyFunctions;
typedef HashMap<FunctionBodyNode*, unsigned> FunctionOffsetMap;
FunctionOffsetMap m_functionOffsets;
// Constant pool
IdentifierMap m_identifierMap;
JSValueMap m_jsValueMap;
NumberMap m_numberMap;
IdentifierStringMap m_stringMap;
JSGlobalData* m_globalData;
OpcodeID m_lastOpcodeID;
#ifndef NDEBUG
size_t m_lastOpcodePosition;
#endif
StackBounds m_stack;
bool m_usesExceptions;
bool m_expressionTooDeep;
};
}
#endif // BytecodeGenerator_h
|