1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709
|
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGPredictionPropagationPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGGraph.h"
#include "DFGPhase.h"
namespace JSC { namespace DFG {
class PredictionPropagationPhase : public Phase {
public:
PredictionPropagationPhase(Graph& graph)
: Phase(graph, "prediction propagation")
{
}
void run()
{
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
m_count = 0;
#endif
// Two stage process: first propagate predictions, then propagate while doing double voting.
do {
m_changed = false;
// Forward propagation is near-optimal for both topologically-sorted and
// DFS-sorted code.
propagateForward();
if (!m_changed)
break;
// Backward propagation reduces the likelihood that pathological code will
// cause slowness. Loops (especially nested ones) resemble backward flow.
// This pass captures two cases: (1) it detects if the forward fixpoint
// found a sound solution and (2) short-circuits backward flow.
m_changed = false;
propagateBackward();
} while (m_changed);
do {
m_changed = false;
doRoundOfDoubleVoting();
propagateForward();
if (!m_changed)
break;
m_changed = false;
doRoundOfDoubleVoting();
propagateBackward();
} while (m_changed);
fixup();
}
private:
bool setPrediction(PredictedType prediction)
{
ASSERT(m_graph[m_compileIndex].hasResult());
// setPrediction() is used when we know that there is no way that we can change
// our minds about what the prediction is going to be. There is no semantic
// difference between setPrediction() and mergePrediction() other than the
// increased checking to validate this property.
ASSERT(m_graph[m_compileIndex].prediction() == PredictNone || m_graph[m_compileIndex].prediction() == prediction);
return m_graph[m_compileIndex].predict(prediction);
}
bool mergePrediction(PredictedType prediction)
{
ASSERT(m_graph[m_compileIndex].hasResult());
return m_graph[m_compileIndex].predict(prediction);
}
void propagate(Node& node)
{
if (!node.shouldGenerate())
return;
NodeType op = node.op;
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLog(" %s @%u: ", Graph::opName(op), m_compileIndex);
#endif
bool changed = false;
switch (op) {
case JSConstant:
case WeakJSConstant: {
changed |= setPrediction(predictionFromValue(m_graph.valueOfJSConstant(m_compileIndex)));
break;
}
case GetLocal: {
PredictedType prediction = node.variableAccessData()->prediction();
if (prediction)
changed |= mergePrediction(prediction);
break;
}
case SetLocal: {
changed |= node.variableAccessData()->predict(m_graph[node.child1()].prediction());
break;
}
case BitAnd:
case BitOr:
case BitXor:
case BitRShift:
case BitLShift:
case BitURShift:
case ValueToInt32: {
changed |= setPrediction(PredictInt32);
break;
}
case ArrayPop:
case ArrayPush: {
if (node.getHeapPrediction())
changed |= mergePrediction(node.getHeapPrediction());
break;
}
case StringCharCodeAt: {
changed |= mergePrediction(PredictInt32);
break;
}
case ArithMod: {
PredictedType left = m_graph[node.child1()].prediction();
PredictedType right = m_graph[node.child2()].prediction();
if (left && right) {
if (isInt32Prediction(mergePredictions(left, right)) && nodeCanSpeculateInteger(node.arithNodeFlags()))
changed |= mergePrediction(PredictInt32);
else
changed |= mergePrediction(PredictDouble);
}
break;
}
case UInt32ToNumber: {
if (nodeCanSpeculateInteger(node.arithNodeFlags()))
changed |= setPrediction(PredictInt32);
else
changed |= setPrediction(PredictNumber);
break;
}
case ValueAdd: {
PredictedType left = m_graph[node.child1()].prediction();
PredictedType right = m_graph[node.child2()].prediction();
if (left && right) {
if (isNumberPrediction(left) && isNumberPrediction(right)) {
if (m_graph.addShouldSpeculateInteger(node))
changed |= mergePrediction(PredictInt32);
else
changed |= mergePrediction(PredictDouble);
} else if (!(left & PredictNumber) || !(right & PredictNumber)) {
// left or right is definitely something other than a number.
changed |= mergePrediction(PredictString);
} else
changed |= mergePrediction(PredictString | PredictInt32 | PredictDouble);
}
break;
}
case ArithAdd:
case ArithSub: {
PredictedType left = m_graph[node.child1()].prediction();
PredictedType right = m_graph[node.child2()].prediction();
if (left && right) {
if (m_graph.addShouldSpeculateInteger(node))
changed |= mergePrediction(PredictInt32);
else
changed |= mergePrediction(PredictDouble);
}
break;
}
case ArithMul:
case ArithMin:
case ArithMax:
case ArithDiv: {
PredictedType left = m_graph[node.child1()].prediction();
PredictedType right = m_graph[node.child2()].prediction();
if (left && right) {
if (isInt32Prediction(mergePredictions(left, right)) && nodeCanSpeculateInteger(node.arithNodeFlags()))
changed |= mergePrediction(PredictInt32);
else
changed |= mergePrediction(PredictDouble);
}
break;
}
case ArithSqrt: {
changed |= setPrediction(PredictDouble);
break;
}
case ArithAbs: {
PredictedType child = m_graph[node.child1()].prediction();
if (child) {
if (nodeCanSpeculateInteger(node.arithNodeFlags()))
changed |= mergePrediction(child);
else
changed |= setPrediction(PredictDouble);
}
break;
}
case LogicalNot:
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq:
case CompareEq:
case CompareStrictEq:
case InstanceOf: {
changed |= setPrediction(PredictBoolean);
break;
}
case GetById: {
if (node.getHeapPrediction())
changed |= mergePrediction(node.getHeapPrediction());
else if (codeBlock()->identifier(node.identifierNumber()) == globalData().propertyNames->length) {
// If there is no prediction from value profiles, check if we might be
// able to infer the type ourselves.
bool isArray = isArrayPrediction(m_graph[node.child1()].prediction());
bool isString = isStringPrediction(m_graph[node.child1()].prediction());
bool isByteArray = m_graph[node.child1()].shouldSpeculateByteArray();
bool isInt8Array = m_graph[node.child1()].shouldSpeculateInt8Array();
bool isInt16Array = m_graph[node.child1()].shouldSpeculateInt16Array();
bool isInt32Array = m_graph[node.child1()].shouldSpeculateInt32Array();
bool isUint8Array = m_graph[node.child1()].shouldSpeculateUint8Array();
bool isUint8ClampedArray = m_graph[node.child1()].shouldSpeculateUint8ClampedArray();
bool isUint16Array = m_graph[node.child1()].shouldSpeculateUint16Array();
bool isUint32Array = m_graph[node.child1()].shouldSpeculateUint32Array();
bool isFloat32Array = m_graph[node.child1()].shouldSpeculateFloat32Array();
bool isFloat64Array = m_graph[node.child1()].shouldSpeculateFloat64Array();
if (isArray || isString || isByteArray || isInt8Array || isInt16Array || isInt32Array || isUint8Array || isUint8ClampedArray || isUint16Array || isUint32Array || isFloat32Array || isFloat64Array)
changed |= mergePrediction(PredictInt32);
}
break;
}
case GetByIdFlush:
if (node.getHeapPrediction())
changed |= mergePrediction(node.getHeapPrediction());
break;
case GetByVal: {
if (m_graph[node.child1()].shouldSpeculateUint32Array() || m_graph[node.child1()].shouldSpeculateFloat32Array() || m_graph[node.child1()].shouldSpeculateFloat64Array())
changed |= mergePrediction(PredictDouble);
else if (node.getHeapPrediction())
changed |= mergePrediction(node.getHeapPrediction());
break;
}
case GetPropertyStorage:
case GetIndexedPropertyStorage: {
changed |= setPrediction(PredictOther);
break;
}
case GetByOffset: {
if (node.getHeapPrediction())
changed |= mergePrediction(node.getHeapPrediction());
break;
}
case Call:
case Construct: {
if (node.getHeapPrediction())
changed |= mergePrediction(node.getHeapPrediction());
break;
}
case ConvertThis: {
PredictedType prediction = m_graph[node.child1()].prediction();
if (prediction) {
if (prediction & ~PredictObjectMask) {
prediction &= PredictObjectMask;
prediction = mergePredictions(prediction, PredictObjectOther);
}
changed |= mergePrediction(prediction);
}
break;
}
case GetGlobalVar: {
PredictedType prediction = m_graph.getGlobalVarPrediction(node.varNumber());
if (prediction)
changed |= mergePrediction(prediction);
break;
}
case PutGlobalVar: {
changed |= m_graph.predictGlobalVar(node.varNumber(), m_graph[node.child1()].prediction());
break;
}
case GetScopedVar:
case Resolve:
case ResolveBase:
case ResolveBaseStrictPut:
case ResolveGlobal: {
PredictedType prediction = node.getHeapPrediction();
if (prediction)
changed |= mergePrediction(prediction);
break;
}
case GetScopeChain: {
changed |= setPrediction(PredictCellOther);
break;
}
case GetCallee: {
changed |= setPrediction(PredictFunction);
break;
}
case CreateThis:
case NewObject: {
changed |= setPrediction(PredictFinalObject);
break;
}
case NewArray:
case NewArrayBuffer: {
changed |= setPrediction(PredictArray);
break;
}
case NewRegexp: {
changed |= setPrediction(PredictObjectOther);
break;
}
case StringCharAt:
case StrCat: {
changed |= setPrediction(PredictString);
break;
}
case ToPrimitive: {
PredictedType child = m_graph[node.child1()].prediction();
if (child) {
if (isObjectPrediction(child)) {
// I'd love to fold this case into the case below, but I can't, because
// removing PredictObjectMask from something that only has an object
// prediction and nothing else means we have an ill-formed PredictedType
// (strong predict-none). This should be killed once we remove all traces
// of static (aka weak) predictions.
changed |= mergePrediction(PredictString);
} else if (child & PredictObjectMask) {
// Objects get turned into strings. So if the input has hints of objectness,
// the output will have hinsts of stringiness.
changed |= mergePrediction(mergePredictions(child & ~PredictObjectMask, PredictString));
} else
changed |= mergePrediction(child);
}
break;
}
case GetArrayLength:
case GetByteArrayLength:
case GetInt8ArrayLength:
case GetInt16ArrayLength:
case GetInt32ArrayLength:
case GetUint8ArrayLength:
case GetUint8ClampedArrayLength:
case GetUint16ArrayLength:
case GetUint32ArrayLength:
case GetFloat32ArrayLength:
case GetFloat64ArrayLength:
case GetStringLength: {
// This node should never be visible at this stage of compilation. It is
// inserted by fixup(), which follows this phase.
ASSERT_NOT_REACHED();
break;
}
#ifndef NDEBUG
// These get ignored because they don't return anything.
case PutScopedVar:
case DFG::Jump:
case Branch:
case Breakpoint:
case Return:
case CheckHasInstance:
case Phi:
case Flush:
case Throw:
case ThrowReferenceError:
case ForceOSRExit:
case SetArgument:
case PutByVal:
case PutByValAlias:
case PutById:
case PutByIdDirect:
case CheckStructure:
case CheckFunction:
case PutStructure:
case PutByOffset:
break;
// These gets ignored because it doesn't do anything.
case Phantom:
case InlineStart:
case Nop:
break;
#else
default:
break;
#endif
}
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLog("%s\n", predictionToString(m_graph[m_compileIndex].prediction()));
#endif
m_changed |= changed;
}
void propagateForward()
{
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLog("Propagating predictions forward [%u]\n", ++m_count);
#endif
for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex)
propagate(m_graph[m_compileIndex]);
}
void propagateBackward()
{
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLog("Propagating predictions backward [%u]\n", ++m_count);
#endif
for (m_compileIndex = m_graph.size(); m_compileIndex-- > 0;)
propagate(m_graph[m_compileIndex]);
}
void vote(NodeUse nodeUse, VariableAccessData::Ballot ballot)
{
switch (m_graph[nodeUse].op) {
case ValueToInt32:
case UInt32ToNumber:
nodeUse = m_graph[nodeUse].child1();
break;
default:
break;
}
if (m_graph[nodeUse].op == GetLocal)
m_graph[nodeUse].variableAccessData()->vote(ballot);
}
void vote(Node& node, VariableAccessData::Ballot ballot)
{
if (node.op & NodeHasVarArgs) {
for (unsigned childIdx = node.firstChild(); childIdx < node.firstChild() + node.numChildren(); childIdx++)
vote(m_graph.m_varArgChildren[childIdx], ballot);
return;
}
if (!node.child1())
return;
vote(node.child1(), ballot);
if (!node.child2())
return;
vote(node.child2(), ballot);
if (!node.child3())
return;
vote(node.child3(), ballot);
}
void doRoundOfDoubleVoting()
{
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLog("Voting on double uses of locals [%u]\n", m_count);
#endif
for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i)
m_graph.m_variableAccessData[i].find()->clearVotes();
for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex) {
Node& node = m_graph[m_compileIndex];
switch (node.op) {
case ValueAdd:
case ArithAdd:
case ArithSub: {
PredictedType left = m_graph[node.child1()].prediction();
PredictedType right = m_graph[node.child2()].prediction();
VariableAccessData::Ballot ballot;
if (isNumberPrediction(left) && isNumberPrediction(right)
&& !m_graph.addShouldSpeculateInteger(node))
ballot = VariableAccessData::VoteDouble;
else
ballot = VariableAccessData::VoteValue;
vote(node.child1(), ballot);
vote(node.child2(), ballot);
break;
}
case ArithMul:
case ArithMin:
case ArithMax:
case ArithMod:
case ArithDiv: {
PredictedType left = m_graph[node.child1()].prediction();
PredictedType right = m_graph[node.child2()].prediction();
VariableAccessData::Ballot ballot;
if (isNumberPrediction(left) && isNumberPrediction(right) && !(Node::shouldSpeculateInteger(m_graph[node.child1()], m_graph[node.child1()]) && node.canSpeculateInteger()))
ballot = VariableAccessData::VoteDouble;
else
ballot = VariableAccessData::VoteValue;
vote(node.child1(), ballot);
vote(node.child2(), ballot);
break;
}
case ArithAbs:
VariableAccessData::Ballot ballot;
if (!(m_graph[node.child1()].shouldSpeculateInteger() && node.canSpeculateInteger()))
ballot = VariableAccessData::VoteDouble;
else
ballot = VariableAccessData::VoteValue;
vote(node.child1(), ballot);
break;
case ArithSqrt:
vote(node.child1(), VariableAccessData::VoteDouble);
break;
case SetLocal: {
PredictedType prediction = m_graph[node.child1()].prediction();
if (isDoublePrediction(prediction))
node.variableAccessData()->vote(VariableAccessData::VoteDouble);
else if (!isNumberPrediction(prediction) || isInt32Prediction(prediction))
node.variableAccessData()->vote(VariableAccessData::VoteValue);
break;
}
default:
vote(node, VariableAccessData::VoteValue);
break;
}
}
for (unsigned i = 0; i < m_graph.m_variableAccessData.size(); ++i)
m_changed |= m_graph.m_variableAccessData[i].find()->tallyVotesForShouldUseDoubleFormat();
}
void fixupNode(Node& node)
{
if (!node.shouldGenerate())
return;
NodeType op = node.op;
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLog(" %s @%u: ", Graph::opName(op), m_compileIndex);
#endif
switch (op) {
case GetById: {
if (!isInt32Prediction(m_graph[m_compileIndex].prediction()))
break;
if (codeBlock()->identifier(node.identifierNumber()) != globalData().propertyNames->length)
break;
bool isArray = isArrayPrediction(m_graph[node.child1()].prediction());
bool isString = isStringPrediction(m_graph[node.child1()].prediction());
bool isByteArray = m_graph[node.child1()].shouldSpeculateByteArray();
bool isInt8Array = m_graph[node.child1()].shouldSpeculateInt8Array();
bool isInt16Array = m_graph[node.child1()].shouldSpeculateInt16Array();
bool isInt32Array = m_graph[node.child1()].shouldSpeculateInt32Array();
bool isUint8Array = m_graph[node.child1()].shouldSpeculateUint8Array();
bool isUint8ClampedArray = m_graph[node.child1()].shouldSpeculateUint8ClampedArray();
bool isUint16Array = m_graph[node.child1()].shouldSpeculateUint16Array();
bool isUint32Array = m_graph[node.child1()].shouldSpeculateUint32Array();
bool isFloat32Array = m_graph[node.child1()].shouldSpeculateFloat32Array();
bool isFloat64Array = m_graph[node.child1()].shouldSpeculateFloat64Array();
if (!isArray && !isString && !isByteArray && !isInt8Array && !isInt16Array && !isInt32Array && !isUint8Array && !isUint8ClampedArray && !isUint16Array && !isUint32Array && !isFloat32Array && !isFloat64Array)
break;
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLog(" @%u -> %s", m_compileIndex, isArray ? "GetArrayLength" : "GetStringLength");
#endif
if (isArray)
node.op = GetArrayLength;
else if (isString)
node.op = GetStringLength;
else if (isByteArray)
node.op = GetByteArrayLength;
else if (isInt8Array)
node.op = GetInt8ArrayLength;
else if (isInt16Array)
node.op = GetInt16ArrayLength;
else if (isInt32Array)
node.op = GetInt32ArrayLength;
else if (isUint8Array)
node.op = GetUint8ArrayLength;
else if (isUint8ClampedArray)
node.op = GetUint8ClampedArrayLength;
else if (isUint16Array)
node.op = GetUint16ArrayLength;
else if (isUint32Array)
node.op = GetUint32ArrayLength;
else if (isFloat32Array)
node.op = GetFloat32ArrayLength;
else if (isFloat64Array)
node.op = GetFloat64ArrayLength;
else
ASSERT_NOT_REACHED();
m_graph.deref(m_compileIndex); // No longer MustGenerate
break;
}
case GetIndexedPropertyStorage: {
PredictedType basePrediction = m_graph[node.child2()].prediction();
if (!(basePrediction & PredictInt32) && basePrediction) {
node.op = Nop;
m_graph.clearAndDerefChild1(node);
m_graph.clearAndDerefChild2(node);
m_graph.clearAndDerefChild3(node);
node.setRefCount(0);
}
break;
}
case GetByVal:
case StringCharAt:
case StringCharCodeAt: {
if (!!node.child3() && m_graph[node.child3()].op == Nop)
node.children.child3() = NodeUse();
break;
}
default:
break;
}
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLog("\n");
#endif
}
void fixup()
{
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
dataLog("Performing Fixup\n");
#endif
for (m_compileIndex = 0; m_compileIndex < m_graph.size(); ++m_compileIndex)
fixupNode(m_graph[m_compileIndex]);
}
NodeIndex m_compileIndex;
bool m_changed;
#if DFG_ENABLE(DEBUG_PROPAGATION_VERBOSE)
unsigned m_count;
#endif
};
void performPredictionPropagation(Graph& graph)
{
runPhase<PredictionPropagationPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|