1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
/*
* Copyright (C) 1999-2000 Harri Porten (porten@kde.org)
* Copyright (C) 2001 Peter Kelly (pmk@post.com)
* Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2011 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
*/
#ifndef MarkedBlock_h
#define MarkedBlock_h
#include "CardSet.h"
#include "HeapBlock.h"
#include <wtf/Bitmap.h>
#include <wtf/DataLog.h>
#include <wtf/DoublyLinkedList.h>
#include <wtf/HashFunctions.h>
#include <wtf/PageAllocationAligned.h>
#include <wtf/StdLibExtras.h>
#include <wtf/Vector.h>
// Set to log state transitions of blocks.
#define HEAP_LOG_BLOCK_STATE_TRANSITIONS 0
#if HEAP_LOG_BLOCK_STATE_TRANSITIONS
#define HEAP_LOG_BLOCK_STATE_TRANSITION(block) do { \
dataLog( \
"%s:%d %s: block %s = %p, %d\n", \
__FILE__, __LINE__, __FUNCTION__, \
#block, (block), (block)->m_state); \
} while (false)
#else
#define HEAP_LOG_BLOCK_STATE_TRANSITION(block) ((void)0)
#endif
namespace JSC {
class Heap;
class JSCell;
typedef uintptr_t Bits;
static const size_t MB = 1024 * 1024;
bool isZapped(const JSCell*);
// A marked block is a page-aligned container for heap-allocated objects.
// Objects are allocated within cells of the marked block. For a given
// marked block, all cells have the same size. Objects smaller than the
// cell size may be allocated in the marked block, in which case the
// allocation suffers from internal fragmentation: wasted space whose
// size is equal to the difference between the cell size and the object
// size.
class MarkedBlock : public HeapBlock {
friend class WTF::DoublyLinkedListNode<MarkedBlock>;
public:
// Ensure natural alignment for native types whilst recognizing that the smallest
// object the heap will commonly allocate is four words.
static const size_t atomSize = 4 * sizeof(void*);
static const size_t atomShift = 5;
static const size_t blockSize = 64 * KB;
static const size_t blockMask = ~(blockSize - 1); // blockSize must be a power of two.
static const size_t atomsPerBlock = blockSize / atomSize; // ~0.4% overhead
static const size_t atomMask = atomsPerBlock - 1;
static const int cardShift = 8; // This is log2 of bytes per card.
static const size_t bytesPerCard = 1 << cardShift;
static const int cardCount = blockSize / bytesPerCard;
static const int cardMask = cardCount - 1;
struct FreeCell {
FreeCell* next;
};
struct VoidFunctor {
typedef void ReturnType;
void returnValue() { }
};
static MarkedBlock* create(Heap*, size_t cellSize, bool cellsNeedDestruction);
static MarkedBlock* recycle(MarkedBlock*, Heap*, size_t cellSize, bool cellsNeedDestruction);
static void destroy(MarkedBlock*);
static bool isAtomAligned(const void*);
static MarkedBlock* blockFor(const void*);
static size_t firstAtom();
Heap* heap() const;
void* allocate();
enum SweepMode { SweepOnly, SweepToFreeList };
FreeCell* sweep(SweepMode = SweepOnly);
// While allocating from a free list, MarkedBlock temporarily has bogus
// cell liveness data. To restore accurate cell liveness data, call one
// of these functions:
void didConsumeFreeList(); // Call this once you've allocated all the items in the free list.
void zapFreeList(FreeCell* firstFreeCell); // Call this to undo the free list.
void clearMarks();
size_t markCount();
bool markCountIsZero(); // Faster than markCount().
size_t cellSize();
bool cellsNeedDestruction();
size_t size();
size_t capacity();
bool isMarked(const void*);
bool testAndSetMarked(const void*);
bool isLive(const JSCell*);
bool isLiveCell(const void*);
void setMarked(const void*);
#if ENABLE(GGC)
void setDirtyObject(const void* atom)
{
ASSERT(MarkedBlock::blockFor(atom) == this);
m_cards.markCardForAtom(atom);
}
uint8_t* addressOfCardFor(const void* atom)
{
ASSERT(MarkedBlock::blockFor(atom) == this);
return &m_cards.cardForAtom(atom);
}
static inline size_t offsetOfCards()
{
return OBJECT_OFFSETOF(MarkedBlock, m_cards);
}
static inline size_t offsetOfMarks()
{
return OBJECT_OFFSETOF(MarkedBlock, m_marks);
}
typedef Vector<JSCell*, 32> DirtyCellVector;
inline void gatherDirtyCells(DirtyCellVector&);
template <int size> inline void gatherDirtyCellsWithSize(DirtyCellVector&);
#endif
template <typename Functor> void forEachCell(Functor&);
private:
static const size_t atomAlignmentMask = atomSize - 1; // atomSize must be a power of two.
enum BlockState { New, FreeListed, Allocated, Marked, Zapped };
template<bool destructorCallNeeded> FreeCell* sweepHelper(SweepMode = SweepOnly);
typedef char Atom[atomSize];
MarkedBlock(PageAllocationAligned&, Heap*, size_t cellSize, bool cellsNeedDestruction);
Atom* atoms();
size_t atomNumber(const void*);
void callDestructor(JSCell*);
template<BlockState, SweepMode, bool destructorCallNeeded> FreeCell* specializedSweep();
#if ENABLE(GGC)
CardSet<bytesPerCard, blockSize> m_cards;
#endif
size_t m_atomsPerCell;
size_t m_endAtom; // This is a fuzzy end. Always test for < m_endAtom.
#if ENABLE(PARALLEL_GC)
WTF::Bitmap<atomsPerBlock, WTF::BitmapAtomic> m_marks;
#else
WTF::Bitmap<atomsPerBlock, WTF::BitmapNotAtomic> m_marks;
#endif
bool m_cellsNeedDestruction;
BlockState m_state;
Heap* m_heap;
};
inline size_t MarkedBlock::firstAtom()
{
return WTF::roundUpToMultipleOf<atomSize>(sizeof(MarkedBlock)) / atomSize;
}
inline MarkedBlock::Atom* MarkedBlock::atoms()
{
return reinterpret_cast<Atom*>(this);
}
inline bool MarkedBlock::isAtomAligned(const void* p)
{
return !(reinterpret_cast<Bits>(p) & atomAlignmentMask);
}
inline MarkedBlock* MarkedBlock::blockFor(const void* p)
{
return reinterpret_cast<MarkedBlock*>(reinterpret_cast<Bits>(p) & blockMask);
}
inline Heap* MarkedBlock::heap() const
{
return m_heap;
}
inline void MarkedBlock::didConsumeFreeList()
{
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
ASSERT(m_state == FreeListed);
m_state = Allocated;
}
inline void MarkedBlock::clearMarks()
{
HEAP_LOG_BLOCK_STATE_TRANSITION(this);
ASSERT(m_state != New && m_state != FreeListed);
m_marks.clearAll();
// This will become true at the end of the mark phase. We set it now to
// avoid an extra pass to do so later.
m_state = Marked;
}
inline size_t MarkedBlock::markCount()
{
return m_marks.count();
}
inline bool MarkedBlock::markCountIsZero()
{
return m_marks.isEmpty();
}
inline size_t MarkedBlock::cellSize()
{
return m_atomsPerCell * atomSize;
}
inline bool MarkedBlock::cellsNeedDestruction()
{
return m_cellsNeedDestruction;
}
inline size_t MarkedBlock::size()
{
return markCount() * cellSize();
}
inline size_t MarkedBlock::capacity()
{
return m_allocation.size();
}
inline size_t MarkedBlock::atomNumber(const void* p)
{
return (reinterpret_cast<Bits>(p) - reinterpret_cast<Bits>(this)) / atomSize;
}
inline bool MarkedBlock::isMarked(const void* p)
{
return m_marks.get(atomNumber(p));
}
inline bool MarkedBlock::testAndSetMarked(const void* p)
{
return m_marks.concurrentTestAndSet(atomNumber(p));
}
inline void MarkedBlock::setMarked(const void* p)
{
m_marks.set(atomNumber(p));
}
inline bool MarkedBlock::isLive(const JSCell* cell)
{
switch (m_state) {
case Allocated:
return true;
case Zapped:
if (isZapped(cell)) {
// Object dead in previous collection, not allocated since previous collection: mark bit should not be set.
ASSERT(!m_marks.get(atomNumber(cell)));
return false;
}
// Newly allocated objects: mark bit not set.
// Objects that survived prior collection: mark bit set.
return true;
case Marked:
return m_marks.get(atomNumber(cell));
case New:
case FreeListed:
ASSERT_NOT_REACHED();
return false;
}
ASSERT_NOT_REACHED();
return false;
}
inline bool MarkedBlock::isLiveCell(const void* p)
{
ASSERT(MarkedBlock::isAtomAligned(p));
size_t atomNumber = this->atomNumber(p);
size_t firstAtom = this->firstAtom();
if (atomNumber < firstAtom) // Filters pointers into MarkedBlock metadata.
return false;
if ((atomNumber - firstAtom) % m_atomsPerCell) // Filters pointers into cell middles.
return false;
return isLive(static_cast<const JSCell*>(p));
}
template <typename Functor> inline void MarkedBlock::forEachCell(Functor& functor)
{
for (size_t i = firstAtom(); i < m_endAtom; i += m_atomsPerCell) {
JSCell* cell = reinterpret_cast_ptr<JSCell*>(&atoms()[i]);
if (!isLive(cell))
continue;
functor(cell);
}
}
#if ENABLE(GGC)
template <int _cellSize> void MarkedBlock::gatherDirtyCellsWithSize(DirtyCellVector& dirtyCells)
{
if (m_cards.testAndClear(0)) {
char* ptr = reinterpret_cast<char*>(&atoms()[firstAtom()]);
const char* end = reinterpret_cast<char*>(this) + bytesPerCard;
while (ptr < end) {
JSCell* cell = reinterpret_cast<JSCell*>(ptr);
if (isMarked(cell))
dirtyCells.append(cell);
ptr += _cellSize;
}
}
const size_t cellOffset = firstAtom() * atomSize % _cellSize;
for (size_t i = 1; i < m_cards.cardCount; i++) {
if (!m_cards.testAndClear(i))
continue;
char* ptr = reinterpret_cast<char*>(this) + i * bytesPerCard + cellOffset;
char* end = reinterpret_cast<char*>(this) + (i + 1) * bytesPerCard;
while (ptr < end) {
JSCell* cell = reinterpret_cast<JSCell*>(ptr);
if (isMarked(cell))
dirtyCells.append(cell);
ptr += _cellSize;
}
}
}
void MarkedBlock::gatherDirtyCells(DirtyCellVector& dirtyCells)
{
COMPILE_ASSERT((int)m_cards.cardCount == (int)cardCount, MarkedBlockCardCountsMatch);
ASSERT(m_state != New && m_state != FreeListed);
// This is an optimisation to avoid having to walk the set of marked
// blocks twice during GC.
m_state = Marked;
if (markCountIsZero())
return;
size_t cellSize = this->cellSize();
if (cellSize == 32) {
gatherDirtyCellsWithSize<32>(dirtyCells);
return;
}
if (cellSize == 64) {
gatherDirtyCellsWithSize<64>(dirtyCells);
return;
}
const size_t firstCellOffset = firstAtom() * atomSize % cellSize;
if (m_cards.testAndClear(0)) {
char* ptr = reinterpret_cast<char*>(this) + firstAtom() * atomSize;
char* end = reinterpret_cast<char*>(this) + bytesPerCard;
while (ptr < end) {
JSCell* cell = reinterpret_cast<JSCell*>(ptr);
if (isMarked(cell))
dirtyCells.append(cell);
ptr += cellSize;
}
}
for (size_t i = 1; i < m_cards.cardCount; i++) {
if (!m_cards.testAndClear(i))
continue;
char* ptr = reinterpret_cast<char*>(this) + firstCellOffset + cellSize * ((i * bytesPerCard + cellSize - 1 - firstCellOffset) / cellSize);
char* end = reinterpret_cast<char*>(this) + std::min((i + 1) * bytesPerCard, m_endAtom * atomSize);
while (ptr < end) {
JSCell* cell = reinterpret_cast<JSCell*>(ptr);
if (isMarked(cell))
dirtyCells.append(cell);
ptr += cellSize;
}
}
}
#endif
} // namespace JSC
namespace WTF {
struct MarkedBlockHash : PtrHash<JSC::MarkedBlock*> {
static unsigned hash(JSC::MarkedBlock* const& key)
{
// Aligned VM regions tend to be monotonically increasing integers,
// which is a great hash function, but we have to remove the low bits,
// since they're always zero, which is a terrible hash function!
return reinterpret_cast<JSC::Bits>(key) / JSC::MarkedBlock::blockSize;
}
};
template<> struct DefaultHash<JSC::MarkedBlock*> {
typedef MarkedBlockHash Hash;
};
} // namespace WTF
#endif // MarkedBlock_h
|