1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
/*
* Copyright (C) 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "AirAllocateStack.h"
#if ENABLE(B3_JIT)
#include "AirArgInlines.h"
#include "AirCode.h"
#include "AirInsertionSet.h"
#include "AirInstInlines.h"
#include "AirLiveness.h"
#include "AirPhaseScope.h"
#include "StackAlignment.h"
#include <wtf/ListDump.h>
namespace JSC { namespace B3 { namespace Air {
namespace {
const bool verbose = false;
bool attemptAssignment(
StackSlot* slot, intptr_t offsetFromFP, const Vector<StackSlot*>& otherSlots)
{
if (verbose)
dataLog("Attempting to assign ", pointerDump(slot), " to ", offsetFromFP, " with interference ", pointerListDump(otherSlots), "\n");
// Need to align it to the slot's desired alignment.
offsetFromFP = -WTF::roundUpToMultipleOf(slot->alignment(), -offsetFromFP);
for (StackSlot* otherSlot : otherSlots) {
if (!otherSlot->offsetFromFP())
continue;
bool overlap = WTF::rangesOverlap(
offsetFromFP,
offsetFromFP + static_cast<intptr_t>(slot->byteSize()),
otherSlot->offsetFromFP(),
otherSlot->offsetFromFP() + static_cast<intptr_t>(otherSlot->byteSize()));
if (overlap)
return false;
}
if (verbose)
dataLog("Assigned ", pointerDump(slot), " to ", offsetFromFP, "\n");
slot->setOffsetFromFP(offsetFromFP);
return true;
}
void assign(StackSlot* slot, const Vector<StackSlot*>& otherSlots)
{
if (verbose)
dataLog("Attempting to assign ", pointerDump(slot), " with interference ", pointerListDump(otherSlots), "\n");
if (attemptAssignment(slot, -static_cast<intptr_t>(slot->byteSize()), otherSlots))
return;
for (StackSlot* otherSlot : otherSlots) {
if (!otherSlot->offsetFromFP())
continue;
bool didAssign = attemptAssignment(
slot, otherSlot->offsetFromFP() - static_cast<intptr_t>(slot->byteSize()), otherSlots);
if (didAssign)
return;
}
RELEASE_ASSERT_NOT_REACHED();
}
} // anonymous namespace
void allocateStack(Code& code)
{
PhaseScope phaseScope(code, "allocateStack");
// Allocate all of the escaped slots in order. This is kind of a crazy algorithm to allow for
// the possibility of stack slots being assigned frame offsets before we even get here.
ASSERT(!code.frameSize());
Vector<StackSlot*> assignedEscapedStackSlots;
Vector<StackSlot*> escapedStackSlotsWorklist;
for (StackSlot* slot : code.stackSlots()) {
if (slot->isLocked()) {
if (slot->offsetFromFP())
assignedEscapedStackSlots.append(slot);
else
escapedStackSlotsWorklist.append(slot);
} else {
// It would be super strange to have an unlocked stack slot that has an offset already.
ASSERT(!slot->offsetFromFP());
}
}
// This is a fairly expensive loop, but it's OK because we'll usually only have a handful of
// escaped stack slots.
while (!escapedStackSlotsWorklist.isEmpty()) {
StackSlot* slot = escapedStackSlotsWorklist.takeLast();
assign(slot, assignedEscapedStackSlots);
assignedEscapedStackSlots.append(slot);
}
// Now we handle the spill slots.
StackSlotLiveness liveness(code);
IndexMap<StackSlot, HashSet<StackSlot*>> interference(code.stackSlots().size());
Vector<StackSlot*> slots;
for (BasicBlock* block : code) {
StackSlotLiveness::LocalCalc localCalc(liveness, block);
auto interfere = [&] (unsigned instIndex) {
if (verbose)
dataLog("Interfering: ", WTF::pointerListDump(localCalc.live()), "\n");
Inst::forEachDef<Arg>(
block->get(instIndex), block->get(instIndex + 1),
[&] (Arg& arg, Arg::Role, Arg::Type, Arg::Width) {
if (!arg.isStack())
return;
StackSlot* slot = arg.stackSlot();
if (slot->kind() != StackSlotKind::Spill)
return;
for (StackSlot* otherSlot : localCalc.live()) {
interference[slot].add(otherSlot);
interference[otherSlot].add(slot);
}
});
};
for (unsigned instIndex = block->size(); instIndex--;) {
if (verbose)
dataLog("Analyzing: ", block->at(instIndex), "\n");
// Kill dead stores. For simplicity we say that a store is killable if it has only late
// defs and those late defs are to things that are dead right now. We only do that
// because that's the only kind of dead stack store we will see here.
Inst& inst = block->at(instIndex);
if (!inst.hasNonArgEffects()) {
bool ok = true;
inst.forEachArg(
[&] (Arg& arg, Arg::Role role, Arg::Type, Arg::Width) {
if (Arg::isEarlyDef(role)) {
ok = false;
return;
}
if (!Arg::isLateDef(role))
return;
if (!arg.isStack()) {
ok = false;
return;
}
StackSlot* slot = arg.stackSlot();
if (slot->kind() != StackSlotKind::Spill) {
ok = false;
return;
}
if (localCalc.isLive(slot)) {
ok = false;
return;
}
});
if (ok)
inst = Inst();
}
interfere(instIndex);
localCalc.execute(instIndex);
}
interfere(-1);
block->insts().removeAllMatching(
[&] (const Inst& inst) -> bool {
return !inst;
});
}
if (verbose) {
for (StackSlot* slot : code.stackSlots())
dataLog("Interference of ", pointerDump(slot), ": ", pointerListDump(interference[slot]), "\n");
}
// Now we assign stack locations. At its heart this algorithm is just first-fit. For each
// StackSlot we just want to find the offsetFromFP that is closest to zero while ensuring no
// overlap with other StackSlots that this overlaps with.
Vector<StackSlot*> otherSlots = assignedEscapedStackSlots;
for (StackSlot* slot : code.stackSlots()) {
if (slot->offsetFromFP()) {
// Already assigned an offset.
continue;
}
HashSet<StackSlot*>& interferingSlots = interference[slot];
otherSlots.resize(assignedEscapedStackSlots.size());
otherSlots.resize(assignedEscapedStackSlots.size() + interferingSlots.size());
unsigned nextIndex = assignedEscapedStackSlots.size();
for (StackSlot* otherSlot : interferingSlots)
otherSlots[nextIndex++] = otherSlot;
assign(slot, otherSlots);
}
// Figure out how much stack we're using for stack slots.
unsigned frameSizeForStackSlots = 0;
for (StackSlot* slot : code.stackSlots()) {
frameSizeForStackSlots = std::max(
frameSizeForStackSlots,
static_cast<unsigned>(-slot->offsetFromFP()));
}
frameSizeForStackSlots = WTF::roundUpToMultipleOf(stackAlignmentBytes(), frameSizeForStackSlots);
// Now we need to deduce how much argument area we need.
for (BasicBlock* block : code) {
for (Inst& inst : *block) {
for (Arg& arg : inst.args) {
if (arg.isCallArg()) {
// For now, we assume that we use 8 bytes of the call arg. But that's not
// such an awesome assumption.
// FIXME: https://bugs.webkit.org/show_bug.cgi?id=150454
ASSERT(arg.offset() >= 0);
code.requestCallArgAreaSizeInBytes(arg.offset() + 8);
}
}
}
}
code.setFrameSize(frameSizeForStackSlots + code.callArgAreaSizeInBytes());
// Finally, transform the code to use Addr's instead of StackSlot's. This is a lossless
// transformation since we can search the StackSlots array to figure out which StackSlot any
// offset-from-FP refers to.
// FIXME: This may produce addresses that aren't valid if we end up with a ginormous stack frame.
// We would have to scavenge for temporaries if this happened. Fortunately, this case will be
// extremely rare so we can do crazy things when it arises.
// https://bugs.webkit.org/show_bug.cgi?id=152530
InsertionSet insertionSet(code);
for (BasicBlock* block : code) {
for (unsigned instIndex = 0; instIndex < block->size(); ++instIndex) {
Inst& inst = block->at(instIndex);
inst.forEachArg(
[&] (Arg& arg, Arg::Role role, Arg::Type, Arg::Width width) {
auto stackAddr = [&] (int32_t offset) -> Arg {
return Arg::stackAddr(offset, code.frameSize(), width);
};
switch (arg.kind()) {
case Arg::Stack: {
StackSlot* slot = arg.stackSlot();
if (Arg::isZDef(role)
&& slot->kind() == StackSlotKind::Spill
&& slot->byteSize() > Arg::bytes(width)) {
// Currently we only handle this simple case because it's the only one
// that arises: ZDef's are only 32-bit right now. So, when we hit these
// assertions it means that we need to implement those other kinds of
// zero fills.
RELEASE_ASSERT(slot->byteSize() == 8);
RELEASE_ASSERT(width == Arg::Width32);
RELEASE_ASSERT(isValidForm(StoreZero32, Arg::Stack));
insertionSet.insert(
instIndex + 1, StoreZero32, inst.origin,
stackAddr(arg.offset() + 4 + slot->offsetFromFP()));
}
arg = stackAddr(arg.offset() + slot->offsetFromFP());
break;
}
case Arg::CallArg:
arg = stackAddr(arg.offset() - code.frameSize());
break;
default:
break;
}
}
);
}
insertionSet.execute(block);
}
}
} } } // namespace JSC::B3::Air
#endif // ENABLE(B3_JIT)
|