1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
/*
* Copyright (C) 2014-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(JIT)
#include "AccessCase.h"
#include "CodeOrigin.h"
#include "JITStubRoutine.h"
#include "JSFunctionInlines.h"
#include "MacroAssembler.h"
#include "ObjectPropertyConditionSet.h"
#include "ScratchRegisterAllocator.h"
#include "Structure.h"
#include <wtf/Vector.h>
namespace JSC {
namespace DOMJIT {
class GetterSetter;
}
class CodeBlock;
class PolymorphicAccess;
class StructureStubInfo;
class WatchpointsOnStructureStubInfo;
class ScratchRegisterAllocator;
class AccessGenerationResult {
public:
enum Kind {
MadeNoChanges,
GaveUp,
Buffered,
GeneratedNewCode,
GeneratedFinalCode // Generated so much code that we never want to generate code again.
};
AccessGenerationResult()
{
}
AccessGenerationResult(Kind kind)
: m_kind(kind)
{
RELEASE_ASSERT(kind != GeneratedNewCode);
RELEASE_ASSERT(kind != GeneratedFinalCode);
}
AccessGenerationResult(Kind kind, MacroAssemblerCodePtr code)
: m_kind(kind)
, m_code(code)
{
RELEASE_ASSERT(kind == GeneratedNewCode || kind == GeneratedFinalCode);
RELEASE_ASSERT(code);
}
bool operator==(const AccessGenerationResult& other) const
{
return m_kind == other.m_kind && m_code == other.m_code;
}
bool operator!=(const AccessGenerationResult& other) const
{
return !(*this == other);
}
explicit operator bool() const
{
return *this != AccessGenerationResult();
}
Kind kind() const { return m_kind; }
const MacroAssemblerCodePtr& code() const { return m_code; }
bool madeNoChanges() const { return m_kind == MadeNoChanges; }
bool gaveUp() const { return m_kind == GaveUp; }
bool buffered() const { return m_kind == Buffered; }
bool generatedNewCode() const { return m_kind == GeneratedNewCode; }
bool generatedFinalCode() const { return m_kind == GeneratedFinalCode; }
// If we gave up on this attempt to generate code, or if we generated the "final" code, then we
// should give up after this.
bool shouldGiveUpNow() const { return gaveUp() || generatedFinalCode(); }
bool generatedSomeCode() const { return generatedNewCode() || generatedFinalCode(); }
void dump(PrintStream&) const;
private:
Kind m_kind;
MacroAssemblerCodePtr m_code;
};
class PolymorphicAccess {
WTF_MAKE_NONCOPYABLE(PolymorphicAccess);
WTF_MAKE_FAST_ALLOCATED;
public:
PolymorphicAccess();
~PolymorphicAccess();
// When this fails (returns GaveUp), this will leave the old stub intact but you should not try
// to call this method again for that PolymorphicAccess instance.
AccessGenerationResult addCases(
VM&, CodeBlock*, StructureStubInfo&, const Identifier&, Vector<std::unique_ptr<AccessCase>, 2>);
AccessGenerationResult addCase(
VM&, CodeBlock*, StructureStubInfo&, const Identifier&, std::unique_ptr<AccessCase>);
AccessGenerationResult regenerate(VM&, CodeBlock*, StructureStubInfo&, const Identifier&);
bool isEmpty() const { return m_list.isEmpty(); }
unsigned size() const { return m_list.size(); }
const AccessCase& at(unsigned i) const { return *m_list[i]; }
const AccessCase& operator[](unsigned i) const { return *m_list[i]; }
// If this returns false then we are requesting a reset of the owning StructureStubInfo.
bool visitWeak(VM&) const;
// This returns true if it has marked everything it will ever marked. This can be used as an
// optimization to then avoid calling this method again during the fixpoint.
bool propagateTransitions(SlotVisitor&) const;
void aboutToDie();
void dump(PrintStream& out) const;
bool containsPC(void* pc) const
{
if (!m_stubRoutine)
return false;
uintptr_t pcAsInt = bitwise_cast<uintptr_t>(pc);
return m_stubRoutine->startAddress() <= pcAsInt && pcAsInt <= m_stubRoutine->endAddress();
}
private:
friend class AccessCase;
friend class CodeBlock;
friend struct AccessGenerationState;
typedef Vector<std::unique_ptr<AccessCase>, 2> ListType;
void commit(
VM&, std::unique_ptr<WatchpointsOnStructureStubInfo>&, CodeBlock*, StructureStubInfo&,
const Identifier&, AccessCase&);
MacroAssemblerCodePtr regenerate(
VM&, CodeBlock*, StructureStubInfo&, const Identifier&, ListType& cases);
ListType m_list;
RefPtr<JITStubRoutine> m_stubRoutine;
std::unique_ptr<WatchpointsOnStructureStubInfo> m_watchpoints;
std::unique_ptr<Vector<WriteBarrier<JSCell>>> m_weakReferences;
};
struct AccessGenerationState {
AccessGenerationState()
: m_calculatedRegistersForCallAndExceptionHandling(false)
, m_needsToRestoreRegistersIfException(false)
, m_calculatedCallSiteIndex(false)
{
}
CCallHelpers* jit { nullptr };
ScratchRegisterAllocator* allocator;
ScratchRegisterAllocator::PreservedState preservedReusedRegisterState;
PolymorphicAccess* access { nullptr };
StructureStubInfo* stubInfo { nullptr };
MacroAssembler::JumpList success;
MacroAssembler::JumpList failAndRepatch;
MacroAssembler::JumpList failAndIgnore;
GPRReg baseGPR { InvalidGPRReg };
JSValueRegs valueRegs;
GPRReg scratchGPR { InvalidGPRReg };
const Identifier* ident;
std::unique_ptr<WatchpointsOnStructureStubInfo> watchpoints;
Vector<WriteBarrier<JSCell>> weakReferences;
Watchpoint* addWatchpoint(const ObjectPropertyCondition& = ObjectPropertyCondition());
void restoreScratch();
void succeed();
struct SpillState {
SpillState() = default;
SpillState(RegisterSet&& regs, unsigned usedStackBytes)
: spilledRegisters(WTFMove(regs))
, numberOfStackBytesUsedForRegisterPreservation(usedStackBytes)
{
}
RegisterSet spilledRegisters { };
unsigned numberOfStackBytesUsedForRegisterPreservation { std::numeric_limits<unsigned>::max() };
bool isEmpty() const { return numberOfStackBytesUsedForRegisterPreservation == std::numeric_limits<unsigned>::max(); }
};
const RegisterSet& calculateLiveRegistersForCallAndExceptionHandling();
SpillState preserveLiveRegistersToStackForCall(const RegisterSet& extra = RegisterSet());
void restoreLiveRegistersFromStackForCallWithThrownException(const SpillState&);
void restoreLiveRegistersFromStackForCall(const SpillState&, const RegisterSet& dontRestore = RegisterSet());
const RegisterSet& liveRegistersForCall();
CallSiteIndex callSiteIndexForExceptionHandlingOrOriginal();
CallSiteIndex callSiteIndexForExceptionHandling()
{
RELEASE_ASSERT(m_calculatedRegistersForCallAndExceptionHandling);
RELEASE_ASSERT(m_needsToRestoreRegistersIfException);
RELEASE_ASSERT(m_calculatedCallSiteIndex);
return m_callSiteIndex;
}
const HandlerInfo& originalExceptionHandler();
bool needsToRestoreRegistersIfException() const { return m_needsToRestoreRegistersIfException; }
CallSiteIndex originalCallSiteIndex() const;
void emitExplicitExceptionHandler();
void setSpillStateForJSGetterSetter(SpillState& spillState)
{
if (!m_spillStateForJSGetterSetter.isEmpty()) {
ASSERT(m_spillStateForJSGetterSetter.numberOfStackBytesUsedForRegisterPreservation == spillState.numberOfStackBytesUsedForRegisterPreservation);
ASSERT(m_spillStateForJSGetterSetter.spilledRegisters == spillState.spilledRegisters);
}
m_spillStateForJSGetterSetter = spillState;
}
SpillState spillStateForJSGetterSetter() const { return m_spillStateForJSGetterSetter; }
private:
const RegisterSet& liveRegistersToPreserveAtExceptionHandlingCallSite();
RegisterSet m_liveRegistersToPreserveAtExceptionHandlingCallSite;
RegisterSet m_liveRegistersForCall;
CallSiteIndex m_callSiteIndex { CallSiteIndex(std::numeric_limits<unsigned>::max()) };
SpillState m_spillStateForJSGetterSetter;
bool m_calculatedRegistersForCallAndExceptionHandling : 1;
bool m_needsToRestoreRegistersIfException : 1;
bool m_calculatedCallSiteIndex : 1;
};
} // namespace JSC
namespace WTF {
void printInternal(PrintStream&, JSC::AccessGenerationResult::Kind);
void printInternal(PrintStream&, JSC::AccessCase::AccessType);
void printInternal(PrintStream&, JSC::AccessCase::State);
} // namespace WTF
#endif // ENABLE(JIT)
|