1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
|
/*
* Copyright (C) 2015-2017 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(B3_JIT)
#include "AirArg.h"
#include "AirBasicBlock.h"
#include "AirDisassembler.h"
#include "AirSpecial.h"
#include "AirStackSlot.h"
#include "AirTmp.h"
#include "B3SparseCollection.h"
#include "CCallHelpers.h"
#include "RegisterAtOffsetList.h"
#include "StackAlignment.h"
#include <wtf/IndexMap.h>
namespace JSC { namespace B3 {
class Procedure;
#if COMPILER(GCC) && ASSERT_DISABLED
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wreturn-type"
#endif // COMPILER(GCC) && ASSERT_DISABLED
namespace Air {
class BlockInsertionSet;
class CCallSpecial;
class CFG;
class Disassembler;
typedef void WasmBoundsCheckGeneratorFunction(CCallHelpers&, GPRReg);
typedef SharedTask<WasmBoundsCheckGeneratorFunction> WasmBoundsCheckGenerator;
// This is an IR that is very close to the bare metal. It requires about 40x more bytes than the
// generated machine code - for example if you're generating 1MB of machine code, you need about
// 40MB of Air.
class Code {
WTF_MAKE_NONCOPYABLE(Code);
WTF_MAKE_FAST_ALLOCATED;
public:
~Code();
Procedure& proc() { return m_proc; }
const Vector<Reg>& regsInPriorityOrder(Bank bank) const
{
switch (bank) {
case GP:
return m_gpRegsInPriorityOrder;
case FP:
return m_fpRegsInPriorityOrder;
}
ASSERT_NOT_REACHED();
}
// This is the set of registers that Air is allowed to emit code to mutate. It's derived from
// regsInPriorityOrder. Any registers not in this set are said to be "pinned".
const RegisterSet& mutableRegs() const { return m_mutableRegs; }
bool isPinned(Reg reg) const { return !mutableRegs().get(reg); }
void pinRegister(Reg);
void setOptLevel(unsigned optLevel) { m_optLevel = optLevel; }
unsigned optLevel() const { return m_optLevel; }
bool needsUsedRegisters() const;
JS_EXPORT_PRIVATE BasicBlock* addBlock(double frequency = 1);
// Note that you can rely on stack slots always getting indices that are larger than the index
// of any prior stack slot. In fact, all stack slots you create in the future will have an index
// that is >= stackSlots().size().
JS_EXPORT_PRIVATE StackSlot* addStackSlot(
unsigned byteSize, StackSlotKind, B3::StackSlot* = nullptr);
StackSlot* addStackSlot(B3::StackSlot*);
JS_EXPORT_PRIVATE Special* addSpecial(std::unique_ptr<Special>);
// This is the special you need to make a C call!
CCallSpecial* cCallSpecial();
Tmp newTmp(Bank bank)
{
switch (bank) {
case GP:
return Tmp::gpTmpForIndex(m_numGPTmps++);
case FP:
return Tmp::fpTmpForIndex(m_numFPTmps++);
}
ASSERT_NOT_REACHED();
}
unsigned numTmps(Bank bank)
{
switch (bank) {
case GP:
return m_numGPTmps;
case FP:
return m_numFPTmps;
}
ASSERT_NOT_REACHED();
}
template<typename Func>
void forEachTmp(const Func& func)
{
for (unsigned bankIndex = 0; bankIndex < numBanks; ++bankIndex) {
Bank bank = static_cast<Bank>(bankIndex);
unsigned numTmps = this->numTmps(bank);
for (unsigned i = 0; i < numTmps; ++i)
func(Tmp::tmpForIndex(bank, i));
}
}
unsigned callArgAreaSizeInBytes() const { return m_callArgAreaSize; }
// You can call this before code generation to force a minimum call arg area size.
void requestCallArgAreaSizeInBytes(unsigned size)
{
m_callArgAreaSize = std::max(
m_callArgAreaSize,
static_cast<unsigned>(WTF::roundUpToMultipleOf(stackAlignmentBytes(), size)));
}
unsigned frameSize() const { return m_frameSize; }
// Only phases that do stack allocation are allowed to set this. Currently, only
// Air::allocateStack() does this.
void setFrameSize(unsigned frameSize)
{
m_frameSize = frameSize;
}
// Note that this is not the same thing as proc().numEntrypoints(). This value here may be zero
// until we lower EntrySwitch.
unsigned numEntrypoints() const { return m_entrypoints.size(); }
const Vector<FrequentedBlock>& entrypoints() const { return m_entrypoints; }
const FrequentedBlock& entrypoint(unsigned index) const { return m_entrypoints[index]; }
bool isEntrypoint(BasicBlock*) const;
// This is used by lowerEntrySwitch().
template<typename Vector>
void setEntrypoints(Vector&& vector)
{
m_entrypoints = std::forward<Vector>(vector);
}
CCallHelpers::Label entrypointLabel(unsigned index) const
{
return m_entrypointLabels[index];
}
// This is used by generate().
template<typename Vector>
void setEntrypointLabels(Vector&& vector)
{
m_entrypointLabels = std::forward<Vector>(vector);
}
void setStackIsAllocated(bool value)
{
m_stackIsAllocated = value;
}
bool stackIsAllocated() const { return m_stackIsAllocated; }
// This sets the callee save registers.
void setCalleeSaveRegisterAtOffsetList(RegisterAtOffsetList&&, StackSlot*);
// This returns the correctly offset list of callee save registers.
RegisterAtOffsetList calleeSaveRegisterAtOffsetList() const;
// This just tells you what the callee saves are.
RegisterSet calleeSaveRegisters() const { return m_calleeSaveRegisters; }
// Recomputes predecessors and deletes unreachable blocks.
void resetReachability();
JS_EXPORT_PRIVATE void dump(PrintStream&) const;
unsigned size() const { return m_blocks.size(); }
BasicBlock* at(unsigned index) const { return m_blocks[index].get(); }
BasicBlock* operator[](unsigned index) const { return at(index); }
// This is used by phases that optimize the block list. You shouldn't use this unless you really know
// what you're doing.
Vector<std::unique_ptr<BasicBlock>>& blockList() { return m_blocks; }
// Finds the smallest index' such that at(index') != null and index' >= index.
JS_EXPORT_PRIVATE unsigned findFirstBlockIndex(unsigned index) const;
// Finds the smallest index' such that at(index') != null and index' > index.
unsigned findNextBlockIndex(unsigned index) const;
BasicBlock* findNextBlock(BasicBlock*) const;
class iterator {
public:
iterator()
: m_code(nullptr)
, m_index(0)
{
}
iterator(const Code& code, unsigned index)
: m_code(&code)
, m_index(m_code->findFirstBlockIndex(index))
{
}
BasicBlock* operator*()
{
return m_code->at(m_index);
}
iterator& operator++()
{
m_index = m_code->findFirstBlockIndex(m_index + 1);
return *this;
}
bool operator==(const iterator& other) const
{
return m_index == other.m_index;
}
bool operator!=(const iterator& other) const
{
return !(*this == other);
}
private:
const Code* m_code;
unsigned m_index;
};
iterator begin() const { return iterator(*this, 0); }
iterator end() const { return iterator(*this, size()); }
const SparseCollection<StackSlot>& stackSlots() const { return m_stackSlots; }
SparseCollection<StackSlot>& stackSlots() { return m_stackSlots; }
const SparseCollection<Special>& specials() const { return m_specials; }
SparseCollection<Special>& specials() { return m_specials; }
template<typename Callback>
void forAllTmps(const Callback& callback) const
{
for (unsigned i = m_numGPTmps; i--;)
callback(Tmp::gpTmpForIndex(i));
for (unsigned i = m_numFPTmps; i--;)
callback(Tmp::fpTmpForIndex(i));
}
void addFastTmp(Tmp);
bool isFastTmp(Tmp tmp) const { return m_fastTmps.contains(tmp); }
CFG& cfg() const { return *m_cfg; }
void* addDataSection(size_t);
// The name has to be a string literal, since we don't do any memory management for the string.
void setLastPhaseName(const char* name)
{
m_lastPhaseName = name;
}
const char* lastPhaseName() const { return m_lastPhaseName; }
void setWasmBoundsCheckGenerator(RefPtr<WasmBoundsCheckGenerator> generator)
{
m_wasmBoundsCheckGenerator = generator;
}
RefPtr<WasmBoundsCheckGenerator> wasmBoundsCheckGenerator() const { return m_wasmBoundsCheckGenerator; }
// This is a hash of the code. You can use this if you want to put code into a hashtable, but
// it's mainly for validating the results from JSAir.
unsigned jsHash() const;
void setDisassembler(std::unique_ptr<Disassembler>&& disassembler) { m_disassembler = WTFMove(disassembler); }
Disassembler* disassembler() { return m_disassembler.get(); }
RegisterSet mutableGPRs();
RegisterSet mutableFPRs();
RegisterSet pinnedRegisters() const { return m_pinnedRegs; }
private:
friend class ::JSC::B3::Procedure;
friend class BlockInsertionSet;
Code(Procedure&);
void setRegsInPriorityOrder(Bank, const Vector<Reg>&);
Vector<Reg>& regsInPriorityOrderImpl(Bank bank)
{
switch (bank) {
case GP:
return m_gpRegsInPriorityOrder;
case FP:
return m_fpRegsInPriorityOrder;
}
ASSERT_NOT_REACHED();
}
Procedure& m_proc; // Some meta-data, like byproducts, is stored in the Procedure.
Vector<Reg> m_gpRegsInPriorityOrder;
Vector<Reg> m_fpRegsInPriorityOrder;
RegisterSet m_mutableRegs;
RegisterSet m_pinnedRegs;
SparseCollection<StackSlot> m_stackSlots;
Vector<std::unique_ptr<BasicBlock>> m_blocks;
SparseCollection<Special> m_specials;
std::unique_ptr<CFG> m_cfg;
HashSet<Tmp> m_fastTmps;
CCallSpecial* m_cCallSpecial { nullptr };
unsigned m_numGPTmps { 0 };
unsigned m_numFPTmps { 0 };
unsigned m_frameSize { 0 };
unsigned m_callArgAreaSize { 0 };
bool m_stackIsAllocated { false };
RegisterAtOffsetList m_uncorrectedCalleeSaveRegisterAtOffsetList;
RegisterSet m_calleeSaveRegisters;
StackSlot* m_calleeSaveStackSlot { nullptr };
Vector<FrequentedBlock> m_entrypoints; // This is empty until after lowerEntrySwitch().
Vector<CCallHelpers::Label> m_entrypointLabels; // This is empty until code generation.
RefPtr<WasmBoundsCheckGenerator> m_wasmBoundsCheckGenerator;
const char* m_lastPhaseName;
std::unique_ptr<Disassembler> m_disassembler;
unsigned m_optLevel { defaultOptLevel() };
};
} } } // namespace JSC::B3::Air
#if COMPILER(GCC) && ASSERT_DISABLED
#pragma GCC diagnostic pop
#endif // COMPILER(GCC) && ASSERT_DISABLED
#endif // ENABLE(B3_JIT)
|