1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
/*
* Copyright (C) 2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "GPRInfo.h"
#include "JSCJSValue.h"
#include "ResultType.h"
#include "TagRegistersMode.h"
namespace JSC {
class CCallHelpers;
struct ObservedType {
ObservedType(uint8_t bits = TypeEmpty)
: m_bits(bits)
{ }
bool sawInt32() const { return m_bits & TypeInt32; }
bool isOnlyInt32() const { return m_bits == TypeInt32; }
bool sawNumber() const { return m_bits & TypeNumber; }
bool isOnlyNumber() const { return m_bits == TypeNumber; }
bool sawNonNumber() const { return m_bits & TypeNonNumber; }
bool isOnlyNonNumber() const { return m_bits == TypeNonNumber; }
bool isEmpty() const { return !m_bits; }
uint8_t bits() const { return m_bits; }
ObservedType withInt32() const { return ObservedType(m_bits | TypeInt32); }
ObservedType withNumber() const { return ObservedType(m_bits | TypeNumber); }
ObservedType withNonNumber() const { return ObservedType(m_bits | TypeNonNumber); }
ObservedType withoutNonNumber() const { return ObservedType(m_bits & ~TypeNonNumber); }
bool operator==(const ObservedType& other) const { return m_bits == other.m_bits; }
static const uint8_t TypeEmpty = 0x0;
static const uint8_t TypeInt32 = 0x1;
static const uint8_t TypeNumber = 0x02;
static const uint8_t TypeNonNumber = 0x04;
static const uint32_t numBitsNeeded = 3;
private:
uint8_t m_bits;
};
struct ArithProfile {
private:
static const uint32_t numberOfFlagBits = 5;
static const uint32_t rhsResultTypeShift = numberOfFlagBits;
static const uint32_t lhsResultTypeShift = rhsResultTypeShift + ResultType::numBitsNeeded;
static const uint32_t rhsObservedTypeShift = lhsResultTypeShift + ResultType::numBitsNeeded;
static const uint32_t lhsObservedTypeShift = rhsObservedTypeShift + ObservedType::numBitsNeeded;
static_assert(ObservedType::numBitsNeeded == 3, "We make a hard assumption about that here.");
static const uint32_t clearRhsObservedTypeBitMask = static_cast<uint32_t>(~((1 << rhsObservedTypeShift) | (1 << (rhsObservedTypeShift + 1)) | (1 << (rhsObservedTypeShift + 2))));
static const uint32_t clearLhsObservedTypeBitMask = static_cast<uint32_t>(~((1 << lhsObservedTypeShift) | (1 << (lhsObservedTypeShift + 1)) | (1 << (lhsObservedTypeShift + 2))));
static const uint32_t resultTypeMask = (1 << ResultType::numBitsNeeded) - 1;
static const uint32_t observedTypeMask = (1 << ObservedType::numBitsNeeded) - 1;
public:
static const uint32_t specialFastPathBit = 1 << (lhsObservedTypeShift + ObservedType::numBitsNeeded);
static_assert((lhsObservedTypeShift + ObservedType::numBitsNeeded) <= (sizeof(uint32_t) * 8) - 1, "Should fit in a uint32_t.");
static_assert(!(specialFastPathBit & ~clearLhsObservedTypeBitMask), "These bits should not intersect.");
static_assert(specialFastPathBit & clearLhsObservedTypeBitMask, "These bits should intersect.");
static_assert(specialFastPathBit > ~clearLhsObservedTypeBitMask, "These bits should not intersect and specialFastPathBit should be a higher bit.");
ArithProfile(ResultType arg)
{
m_bits = (arg.bits() << lhsResultTypeShift);
ASSERT(lhsResultType().bits() == arg.bits());
ASSERT(lhsObservedType().isEmpty());
ASSERT(rhsObservedType().isEmpty());
}
ArithProfile(ResultType lhs, ResultType rhs)
{
m_bits = (lhs.bits() << lhsResultTypeShift) | (rhs.bits() << rhsResultTypeShift);
ASSERT(lhsResultType().bits() == lhs.bits() && rhsResultType().bits() == rhs.bits());
ASSERT(lhsObservedType().isEmpty());
ASSERT(rhsObservedType().isEmpty());
}
ArithProfile() = default;
static ArithProfile fromInt(uint32_t bits)
{
ArithProfile result;
result.m_bits = bits;
return result;
}
enum ObservedResults {
NonNegZeroDouble = 1 << 0,
NegZeroDouble = 1 << 1,
NonNumber = 1 << 2,
Int32Overflow = 1 << 3,
Int52Overflow = 1 << 4,
};
ResultType lhsResultType() const { return ResultType((m_bits >> lhsResultTypeShift) & resultTypeMask); }
ResultType rhsResultType() const { return ResultType((m_bits >> rhsResultTypeShift) & resultTypeMask); }
ObservedType lhsObservedType() const { return ObservedType((m_bits >> lhsObservedTypeShift) & observedTypeMask); }
ObservedType rhsObservedType() const { return ObservedType((m_bits >> rhsObservedTypeShift) & observedTypeMask); }
void setLhsObservedType(ObservedType type)
{
uint32_t bits = m_bits;
bits &= clearLhsObservedTypeBitMask;
bits |= type.bits() << lhsObservedTypeShift;
m_bits = bits;
ASSERT(lhsObservedType() == type);
}
void setRhsObservedType(ObservedType type)
{
uint32_t bits = m_bits;
bits &= clearRhsObservedTypeBitMask;
bits |= type.bits() << rhsObservedTypeShift;
m_bits = bits;
ASSERT(rhsObservedType() == type);
}
bool tookSpecialFastPath() const { return m_bits & specialFastPathBit; }
bool didObserveNonInt32() const { return hasBits(NonNegZeroDouble | NegZeroDouble | NonNumber); }
bool didObserveDouble() const { return hasBits(NonNegZeroDouble | NegZeroDouble); }
bool didObserveNonNegZeroDouble() const { return hasBits(NonNegZeroDouble); }
bool didObserveNegZeroDouble() const { return hasBits(NegZeroDouble); }
bool didObserveNonNumber() const { return hasBits(NonNumber); }
bool didObserveInt32Overflow() const { return hasBits(Int32Overflow); }
bool didObserveInt52Overflow() const { return hasBits(Int52Overflow); }
void setObservedNonNegZeroDouble() { setBit(NonNegZeroDouble); }
void setObservedNegZeroDouble() { setBit(NegZeroDouble); }
void setObservedNonNumber() { setBit(NonNumber); }
void setObservedInt32Overflow() { setBit(Int32Overflow); }
void setObservedInt52Overflow() { setBit(Int52Overflow); }
const void* addressOfBits() const { return &m_bits; }
void observeResult(JSValue value)
{
if (value.isInt32())
return;
if (value.isNumber()) {
m_bits |= Int32Overflow | Int52Overflow | NonNegZeroDouble | NegZeroDouble;
return;
}
m_bits |= NonNumber;
}
void lhsSawInt32() { setLhsObservedType(lhsObservedType().withInt32()); }
void lhsSawNumber() { setLhsObservedType(lhsObservedType().withNumber()); }
void lhsSawNonNumber() { setLhsObservedType(lhsObservedType().withNonNumber()); }
void rhsSawInt32() { setRhsObservedType(rhsObservedType().withInt32()); }
void rhsSawNumber() { setRhsObservedType(rhsObservedType().withNumber()); }
void rhsSawNonNumber() { setRhsObservedType(rhsObservedType().withNonNumber()); }
void observeLHS(JSValue lhs)
{
ArithProfile newProfile = *this;
if (lhs.isNumber()) {
if (lhs.isInt32())
newProfile.lhsSawInt32();
else
newProfile.lhsSawNumber();
} else
newProfile.lhsSawNonNumber();
m_bits = newProfile.bits();
}
void observeLHSAndRHS(JSValue lhs, JSValue rhs)
{
observeLHS(lhs);
ArithProfile newProfile = *this;
if (rhs.isNumber()) {
if (rhs.isInt32())
newProfile.rhsSawInt32();
else
newProfile.rhsSawNumber();
} else
newProfile.rhsSawNonNumber();
m_bits = newProfile.bits();
}
#if ENABLE(JIT)
// Sets (Int32Overflow | Int52Overflow | NonNegZeroDouble | NegZeroDouble) if it sees a
// double. Sets NonNumber if it sees a non-number.
void emitObserveResult(CCallHelpers&, JSValueRegs, TagRegistersMode = HaveTagRegisters);
// Sets (Int32Overflow | Int52Overflow | NonNegZeroDouble | NegZeroDouble).
bool shouldEmitSetDouble() const;
void emitSetDouble(CCallHelpers&) const;
// Sets NonNumber.
void emitSetNonNumber(CCallHelpers&) const;
bool shouldEmitSetNonNumber() const;
#endif // ENABLE(JIT)
uint32_t bits() const { return m_bits; }
private:
bool hasBits(int mask) const { return m_bits & mask; }
void setBit(int mask) { m_bits |= mask; }
uint32_t m_bits { 0 }; // We take care to update m_bits only in a single operation. We don't ever store an inconsistent bit representation to it.
};
} // namespace JSC
namespace WTF {
void printInternal(PrintStream&, const JSC::ArithProfile&);
void printInternal(PrintStream&, const JSC::ObservedType&);
} // namespace WTF
|