1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
/*
* Copyright (C) 2013-2017 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "BytecodeGraph.h"
#include "BytecodeLivenessAnalysis.h"
#include "CodeBlock.h"
#include "InterpreterInlines.h"
#include "Operations.h"
namespace JSC {
inline bool operandIsAlwaysLive(int operand)
{
return !VirtualRegister(operand).isLocal();
}
inline bool operandThatIsNotAlwaysLiveIsLive(const FastBitVector& out, int operand)
{
unsigned local = VirtualRegister(operand).toLocal();
if (local >= out.numBits())
return false;
return out[local];
}
inline bool operandIsLive(const FastBitVector& out, int operand)
{
return operandIsAlwaysLive(operand) || operandThatIsNotAlwaysLiveIsLive(out, operand);
}
inline bool isValidRegisterForLiveness(int operand)
{
VirtualRegister virtualReg(operand);
if (virtualReg.isConstant())
return false;
return virtualReg.isLocal();
}
// Simplified interface to bytecode use/def, which determines defs first and then uses, and includes
// exception handlers in the uses.
template<typename DerivedAnalysis>
template<typename Graph, typename UseFunctor, typename DefFunctor>
inline void BytecodeLivenessPropagation<DerivedAnalysis>::stepOverInstruction(Graph& graph, unsigned bytecodeOffset, FastBitVector& out, const UseFunctor& use, const DefFunctor& def)
{
// This abstractly execute the instruction in reverse. Instructions logically first use operands and
// then define operands. This logical ordering is necessary for operations that use and def the same
// operand, like:
//
// op_add loc1, loc1, loc2
//
// The use of loc1 happens before the def of loc1. That's a semantic requirement since the add
// operation cannot travel forward in time to read the value that it will produce after reading that
// value. Since we are executing in reverse, this means that we must do defs before uses (reverse of
// uses before defs).
//
// Since this is a liveness analysis, this ordering ends up being particularly important: if we did
// uses before defs, then the add operation above would appear to not have loc1 live, since we'd
// first add it to the out set (the use), and then we'd remove it (the def).
auto* codeBlock = graph.codeBlock();
auto* instructionsBegin = graph.instructions().begin();
auto* instruction = &instructionsBegin[bytecodeOffset];
OpcodeID opcodeID = Interpreter::getOpcodeID(*instruction);
static_cast<DerivedAnalysis*>(this)->computeDefsForBytecodeOffset(
codeBlock, opcodeID, instruction, out,
[&] (typename Graph::CodeBlock*, typename Graph::Instruction*, OpcodeID, int operand) {
if (isValidRegisterForLiveness(operand))
def(VirtualRegister(operand).toLocal());
});
static_cast<DerivedAnalysis*>(this)->computeUsesForBytecodeOffset(
codeBlock, opcodeID, instruction, out,
[&] (typename Graph::CodeBlock*, typename Graph::Instruction*, OpcodeID, int operand) {
if (isValidRegisterForLiveness(operand))
use(VirtualRegister(operand).toLocal());
});
// If we have an exception handler, we want the live-in variables of the
// exception handler block to be included in the live-in of this particular bytecode.
if (auto* handler = codeBlock->handlerForBytecodeOffset(bytecodeOffset)) {
BytecodeBasicBlock* handlerBlock = graph.findBasicBlockWithLeaderOffset(handler->target);
ASSERT(handlerBlock);
handlerBlock->in().forEachSetBit(use);
}
}
template<typename DerivedAnalysis>
template<typename Graph>
inline void BytecodeLivenessPropagation<DerivedAnalysis>::stepOverInstruction(Graph& graph, unsigned bytecodeOffset, FastBitVector& out)
{
stepOverInstruction(
graph, bytecodeOffset, out,
[&] (unsigned bitIndex) {
// This is the use functor, so we set the bit.
out[bitIndex] = true;
},
[&] (unsigned bitIndex) {
// This is the def functor, so we clear the bit.
out[bitIndex] = false;
});
}
template<typename DerivedAnalysis>
template<typename Graph>
inline bool BytecodeLivenessPropagation<DerivedAnalysis>::computeLocalLivenessForBytecodeOffset(Graph& graph, BytecodeBasicBlock* block, unsigned targetOffset, FastBitVector& result)
{
ASSERT(!block->isExitBlock());
ASSERT(!block->isEntryBlock());
FastBitVector out = block->out();
for (int i = block->offsets().size() - 1; i >= 0; i--) {
unsigned bytecodeOffset = block->offsets()[i];
if (targetOffset > bytecodeOffset)
break;
stepOverInstruction(graph, bytecodeOffset, out);
}
return result.setAndCheck(out);
}
template<typename DerivedAnalysis>
template<typename Graph>
inline bool BytecodeLivenessPropagation<DerivedAnalysis>::computeLocalLivenessForBlock(Graph& graph, BytecodeBasicBlock* block)
{
if (block->isExitBlock() || block->isEntryBlock())
return false;
return computeLocalLivenessForBytecodeOffset(graph, block, block->leaderOffset(), block->in());
}
template<typename DerivedAnalysis>
template<typename Graph>
inline FastBitVector BytecodeLivenessPropagation<DerivedAnalysis>::getLivenessInfoAtBytecodeOffset(Graph& graph, unsigned bytecodeOffset)
{
BytecodeBasicBlock* block = graph.findBasicBlockForBytecodeOffset(bytecodeOffset);
ASSERT(block);
ASSERT(!block->isEntryBlock());
ASSERT(!block->isExitBlock());
FastBitVector out;
out.resize(block->out().numBits());
computeLocalLivenessForBytecodeOffset(graph, block, bytecodeOffset, out);
return out;
}
template<typename DerivedAnalysis>
template<typename Graph>
inline void BytecodeLivenessPropagation<DerivedAnalysis>::runLivenessFixpoint(Graph& graph)
{
auto* codeBlock = graph.codeBlock();
unsigned numberOfVariables = codeBlock->numCalleeLocals();
for (BytecodeBasicBlock* block : graph) {
block->in().resize(numberOfVariables);
block->out().resize(numberOfVariables);
block->in().clearAll();
block->out().clearAll();
}
bool changed;
BytecodeBasicBlock* lastBlock = graph.last();
lastBlock->in().clearAll();
lastBlock->out().clearAll();
FastBitVector newOut;
newOut.resize(lastBlock->out().numBits());
do {
changed = false;
for (std::unique_ptr<BytecodeBasicBlock>& block : graph.basicBlocksInReverseOrder()) {
newOut.clearAll();
for (BytecodeBasicBlock* successor : block->successors())
newOut |= successor->in();
block->out() = newOut;
changed |= computeLocalLivenessForBlock(graph, block.get());
}
} while (changed);
}
} // namespace JSC
|