1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
|
/*
* Copyright (C) 2017 Igalia S.L.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "GridTrackSizingAlgorithm.h"
#include "Grid.h"
#include "GridArea.h"
#include "RenderGrid.h"
namespace WebCore {
const LayoutUnit& GridTrack::baseSize() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
return m_baseSize;
}
const LayoutUnit& GridTrack::growthLimit() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
ASSERT(!m_growthLimitCap || m_growthLimitCap.value() >= m_growthLimit || m_baseSize >= m_growthLimitCap.value());
return m_growthLimit;
}
void GridTrack::setBaseSize(LayoutUnit baseSize)
{
m_baseSize = baseSize;
ensureGrowthLimitIsBiggerThanBaseSize();
}
void GridTrack::setGrowthLimit(LayoutUnit growthLimit)
{
m_growthLimit = growthLimit == infinity ? growthLimit : std::min(growthLimit, m_growthLimitCap.value_or(growthLimit));
ensureGrowthLimitIsBiggerThanBaseSize();
}
const LayoutUnit& GridTrack::growthLimitIfNotInfinite() const
{
ASSERT(isGrowthLimitBiggerThanBaseSize());
return m_growthLimit == infinity ? m_baseSize : m_growthLimit;
}
void GridTrack::setTempSize(const LayoutUnit& tempSize)
{
ASSERT(tempSize >= 0);
ASSERT(growthLimitIsInfinite() || growthLimit() >= tempSize);
m_tempSize = tempSize;
}
void GridTrack::growTempSize(const LayoutUnit& tempSize)
{
ASSERT(tempSize >= 0);
m_tempSize += tempSize;
}
void GridTrack::setGrowthLimitCap(std::optional<LayoutUnit> growthLimitCap)
{
ASSERT(!growthLimitCap || growthLimitCap.value() >= 0);
m_growthLimitCap = growthLimitCap;
}
void GridTrack::ensureGrowthLimitIsBiggerThanBaseSize()
{
if (m_growthLimit != infinity && m_growthLimit < m_baseSize)
m_growthLimit = m_baseSize;
}
// Static helper methods.
static bool shouldClearOverrideContainingBlockContentSizeForChild(const RenderBox& child, GridTrackSizingDirection direction)
{
if (direction == ForColumns)
return child.hasRelativeLogicalWidth() || child.style().logicalWidth().isIntrinsicOrAuto();
return child.hasRelativeLogicalHeight() || child.style().logicalHeight().isIntrinsicOrAuto();
}
static bool hasOverrideContainingBlockContentSizeForChild(const RenderBox& child, GridTrackSizingDirection direction)
{
return direction == ForColumns ? child.hasOverrideContainingBlockLogicalWidth() : child.hasOverrideContainingBlockLogicalHeight();
}
static void setOverrideContainingBlockContentSizeForChild(RenderBox& child, GridTrackSizingDirection direction, std::optional<LayoutUnit> size)
{
if (direction == ForColumns)
child.setOverrideContainingBlockContentLogicalWidth(size);
else
child.setOverrideContainingBlockContentLogicalHeight(size);
}
static GridTrackSizingDirection flowAwareDirectionForChild(const RenderGrid* grid, const RenderBox& child, GridTrackSizingDirection direction)
{
ASSERT(grid);
return !grid->isOrthogonalChild(child) ? direction : (direction == ForColumns ? ForRows : ForColumns);
}
static std::optional<LayoutUnit> overrideContainingBlockContentSizeForChild(const RenderBox& child, GridTrackSizingDirection direction)
{
return direction == ForColumns ? child.overrideContainingBlockContentLogicalWidth() : child.overrideContainingBlockContentLogicalHeight();
}
static LayoutUnit computeMarginLogicalSizeForChild(GridTrackSizingDirection direction, const RenderGrid& renderGrid, const RenderBox& child)
{
if (!child.style().hasMargin())
return 0;
LayoutUnit marginStart;
LayoutUnit marginEnd;
if (direction == ForColumns)
child.computeInlineDirectionMargins(renderGrid, child.containingBlockLogicalWidthForContentInRegion(nullptr), child.logicalWidth(), marginStart, marginEnd);
else
child.computeBlockDirectionMargins(renderGrid, marginStart, marginEnd);
return marginStart + marginEnd;
}
// FIXME: we borrowed this from RenderBlock. We cannot call it from here because it's protected for RenderObjects.
static LayoutUnit marginIntrinsicLogicalWidthForChild(const RenderGrid* renderGrid, RenderBox& child)
{
// A margin has three types: fixed, percentage, and auto (variable).
// Auto and percentage margins become 0 when computing min/max width.
// Fixed margins can be added in as is.
Length marginLeft = child.style().marginStartUsing(&renderGrid->style());
Length marginRight = child.style().marginEndUsing(&renderGrid->style());
LayoutUnit margin = 0;
if (marginLeft.isFixed())
margin += marginLeft.value();
if (marginRight.isFixed())
margin += marginRight.value();
return margin;
}
// GridTrackSizingAlgorithm private.
void GridTrackSizingAlgorithm::setFreeSpace(GridTrackSizingDirection direction, std::optional<LayoutUnit> freeSpace)
{
if (direction == ForColumns)
m_freeSpaceColumns = freeSpace;
else
m_freeSpaceRows = freeSpace;
}
void GridTrackSizingAlgorithm::setAvailableSpace(GridTrackSizingDirection direction, std::optional<LayoutUnit> availableSpace)
{
if (direction == ForColumns)
m_availableSpaceColumns = availableSpace;
else
m_availableSpaceRows = availableSpace;
}
const GridTrackSize& GridTrackSizingAlgorithm::rawGridTrackSize(GridTrackSizingDirection direction, unsigned translatedIndex) const
{
bool isRowAxis = direction == ForColumns;
auto& renderStyle = m_renderGrid->style();
auto& trackStyles = isRowAxis ? renderStyle.gridColumns() : renderStyle.gridRows();
auto& autoRepeatTrackStyles = isRowAxis ? renderStyle.gridAutoRepeatColumns() : renderStyle.gridAutoRepeatRows();
auto& autoTrackStyles = isRowAxis ? renderStyle.gridAutoColumns() : renderStyle.gridAutoRows();
unsigned insertionPoint = isRowAxis ? renderStyle.gridAutoRepeatColumnsInsertionPoint() : renderStyle.gridAutoRepeatRowsInsertionPoint();
unsigned autoRepeatTracksCount = m_grid.autoRepeatTracks(direction);
// We should not use GridPositionsResolver::explicitGridXXXCount() for this because the
// explicit grid might be larger than the number of tracks in grid-template-rows|columns (if
// grid-template-areas is specified for example).
unsigned explicitTracksCount = trackStyles.size() + autoRepeatTracksCount;
int untranslatedIndexAsInt = translatedIndex + m_grid.smallestTrackStart(direction);
unsigned autoTrackStylesSize = autoTrackStyles.size();
if (untranslatedIndexAsInt < 0) {
int index = untranslatedIndexAsInt % static_cast<int>(autoTrackStylesSize);
// We need to traspose the index because the first negative implicit line will get the last defined auto track and so on.
index += index ? autoTrackStylesSize : 0;
ASSERT(index >= 0);
return autoTrackStyles[index];
}
unsigned untranslatedIndex = static_cast<unsigned>(untranslatedIndexAsInt);
if (untranslatedIndex >= explicitTracksCount)
return autoTrackStyles[(untranslatedIndex - explicitTracksCount) % autoTrackStylesSize];
if (!autoRepeatTracksCount || untranslatedIndex < insertionPoint)
return trackStyles[untranslatedIndex];
if (untranslatedIndex < (insertionPoint + autoRepeatTracksCount)) {
unsigned autoRepeatLocalIndex = untranslatedIndexAsInt - insertionPoint;
return autoRepeatTrackStyles[autoRepeatLocalIndex % autoRepeatTrackStyles.size()];
}
return trackStyles[untranslatedIndex - autoRepeatTracksCount];
}
LayoutUnit GridTrackSizingAlgorithm::computeTrackBasedSize() const
{
LayoutUnit size;
auto& allTracks = tracks(m_direction);
for (auto& track : allTracks)
size += track.baseSize();
size += m_renderGrid->guttersSize(m_grid, m_direction, 0, allTracks.size(), availableSpace());
return size;
}
LayoutUnit GridTrackSizingAlgorithm::initialBaseSize(const GridTrackSize& trackSize) const
{
const GridLength& gridLength = trackSize.minTrackBreadth();
if (gridLength.isFlex())
return 0;
const Length& trackLength = gridLength.length();
if (trackLength.isSpecified())
return valueForLength(trackLength, std::max<LayoutUnit>(availableSpace().value_or(0), 0));
ASSERT(trackLength.isMinContent() || trackLength.isAuto() || trackLength.isMaxContent());
return 0;
}
LayoutUnit GridTrackSizingAlgorithm::initialGrowthLimit(const GridTrackSize& trackSize, LayoutUnit baseSize) const
{
const GridLength& gridLength = trackSize.maxTrackBreadth();
if (gridLength.isFlex())
return baseSize;
const Length& trackLength = gridLength.length();
if (trackLength.isSpecified())
return valueForLength(trackLength, std::max<LayoutUnit>(availableSpace().value_or(0), 0));
ASSERT(trackLength.isMinContent() || trackLength.isAuto() || trackLength.isMaxContent());
return infinity;
}
void GridTrackSizingAlgorithm::sizeTrackToFitNonSpanningItem(const GridSpan& span, RenderBox& gridItem, GridTrack& track)
{
unsigned trackPosition = span.startLine();
GridTrackSize trackSize = gridTrackSize(m_direction, trackPosition);
if (trackSize.hasMinContentMinTrackBreadth())
track.setBaseSize(std::max(track.baseSize(), m_strategy->minContentForChild(gridItem)));
else if (trackSize.hasMaxContentMinTrackBreadth())
track.setBaseSize(std::max(track.baseSize(), m_strategy->maxContentForChild(gridItem)));
else if (trackSize.hasAutoMinTrackBreadth())
track.setBaseSize(std::max(track.baseSize(), m_strategy->minSizeForChild(gridItem)));
if (trackSize.hasMinContentMaxTrackBreadth()) {
track.setGrowthLimit(std::max(track.growthLimit(), m_strategy->minContentForChild(gridItem)));
} else if (trackSize.hasMaxContentOrAutoMaxTrackBreadth()) {
LayoutUnit growthLimit = m_strategy->maxContentForChild(gridItem);
if (trackSize.isFitContent())
growthLimit = std::min(growthLimit, valueForLength(trackSize.fitContentTrackBreadth().length(), availableSpace().value_or(0)));
track.setGrowthLimit(std::max(track.growthLimit(), growthLimit));
}
}
bool GridTrackSizingAlgorithm::spanningItemCrossesFlexibleSizedTracks(const GridSpan& itemSpan) const
{
for (auto trackPosition : itemSpan) {
const GridTrackSize& trackSize = gridTrackSize(m_direction, trackPosition);
if (trackSize.minTrackBreadth().isFlex() || trackSize.maxTrackBreadth().isFlex())
return true;
}
return false;
}
class GridItemWithSpan {
public:
GridItemWithSpan(RenderBox& gridItem, GridSpan span)
: m_gridItem(gridItem)
, m_span(span)
{
}
RenderBox& gridItem() const { return m_gridItem; }
GridSpan span() const { return m_span; }
bool operator<(const GridItemWithSpan other) const { return m_span.integerSpan() < other.m_span.integerSpan(); }
private:
std::reference_wrapper<RenderBox> m_gridItem;
GridSpan m_span;
};
struct GridItemsSpanGroupRange {
Vector<GridItemWithSpan>::iterator rangeStart;
Vector<GridItemWithSpan>::iterator rangeEnd;
};
enum TrackSizeRestriction {
AllowInfinity,
ForbidInfinity,
};
LayoutUnit GridTrackSizingAlgorithm::itemSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, RenderBox& gridItem) const
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveIntrinsicMaximums:
return m_strategy->minSizeForChild(gridItem);
case ResolveContentBasedMinimums:
return m_strategy->minContentForChild(gridItem);
case ResolveMaxContentMinimums:
case ResolveMaxContentMaximums:
return m_strategy->maxContentForChild(gridItem);
case MaximizeTracks:
ASSERT_NOT_REACHED();
return 0;
}
ASSERT_NOT_REACHED();
return 0;
}
static bool shouldProcessTrackForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrackSize& trackSize)
{
switch (phase) {
case ResolveIntrinsicMinimums:
return trackSize.hasIntrinsicMinTrackBreadth();
case ResolveContentBasedMinimums:
return trackSize.hasMinOrMaxContentMinTrackBreadth();
case ResolveMaxContentMinimums:
return trackSize.hasMaxContentMinTrackBreadth();
case ResolveIntrinsicMaximums:
return trackSize.hasIntrinsicMaxTrackBreadth();
case ResolveMaxContentMaximums:
return trackSize.hasMaxContentOrAutoMaxTrackBreadth();
case MaximizeTracks:
ASSERT_NOT_REACHED();
return false;
}
ASSERT_NOT_REACHED();
return false;
}
static LayoutUnit trackSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track, TrackSizeRestriction restriction)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
case ResolveMaxContentMinimums:
case MaximizeTracks:
return track.baseSize();
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
return restriction == AllowInfinity ? track.growthLimit() : track.growthLimitIfNotInfinite();
}
ASSERT_NOT_REACHED();
return track.baseSize();
}
static void updateTrackSizeForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
case ResolveMaxContentMinimums:
track.setBaseSize(track.plannedSize());
return;
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
track.setGrowthLimit(track.plannedSize());
return;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return;
}
ASSERT_NOT_REACHED();
}
static bool trackShouldGrowBeyondGrowthLimitsForTrackSizeComputationPhase(TrackSizeComputationPhase phase, const GridTrackSize& trackSize)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
return trackSize.hasAutoOrMinContentMinTrackBreadthAndIntrinsicMaxTrackBreadth();
case ResolveMaxContentMinimums:
return trackSize.hasMaxContentMinTrackBreadthAndMaxContentMaxTrackBreadth();
case ResolveIntrinsicMaximums:
case ResolveMaxContentMaximums:
return true;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return false;
}
ASSERT_NOT_REACHED();
return false;
}
static void markAsInfinitelyGrowableForTrackSizeComputationPhase(TrackSizeComputationPhase phase, GridTrack& track)
{
switch (phase) {
case ResolveIntrinsicMinimums:
case ResolveContentBasedMinimums:
case ResolveMaxContentMinimums:
return;
case ResolveIntrinsicMaximums:
if (trackSizeForTrackSizeComputationPhase(phase, track, AllowInfinity) == infinity && track.plannedSize() != infinity)
track.setInfinitelyGrowable(true);
return;
case ResolveMaxContentMaximums:
if (track.infinitelyGrowable())
track.setInfinitelyGrowable(false);
return;
case MaximizeTracks:
ASSERT_NOT_REACHED();
return;
}
ASSERT_NOT_REACHED();
}
template <TrackSizeComputationPhase phase>
void GridTrackSizingAlgorithm::increaseSizesToAccommodateSpanningItems(const GridItemsSpanGroupRange& gridItemsWithSpan)
{
Vector<GridTrack>& allTracks = tracks(m_direction);
for (const auto& trackIndex : m_contentSizedTracksIndex) {
GridTrack& track = allTracks[trackIndex];
track.setPlannedSize(trackSizeForTrackSizeComputationPhase(phase, track, AllowInfinity));
}
Vector<GridTrack*> growBeyondGrowthLimitsTracks;
Vector<GridTrack*> filteredTracks;
for (auto it = gridItemsWithSpan.rangeStart; it != gridItemsWithSpan.rangeEnd; ++it) {
GridItemWithSpan& gridItemWithSpan = *it;
ASSERT(gridItemWithSpan.span().integerSpan() > 1);
const GridSpan& itemSpan = gridItemWithSpan.span();
filteredTracks.shrink(0);
growBeyondGrowthLimitsTracks.shrink(0);
LayoutUnit spanningTracksSize;
for (auto trackPosition : itemSpan) {
const GridTrackSize& trackSize = gridTrackSize(m_direction, trackPosition);
GridTrack& track = tracks(m_direction)[trackPosition];
spanningTracksSize += trackSizeForTrackSizeComputationPhase(phase, track, ForbidInfinity);
if (!shouldProcessTrackForTrackSizeComputationPhase(phase, trackSize))
continue;
filteredTracks.append(&track);
if (trackShouldGrowBeyondGrowthLimitsForTrackSizeComputationPhase(phase, trackSize))
growBeyondGrowthLimitsTracks.append(&track);
}
if (filteredTracks.isEmpty())
continue;
spanningTracksSize += m_renderGrid->guttersSize(m_grid, m_direction, itemSpan.startLine(), itemSpan.integerSpan(), availableSpace());
LayoutUnit extraSpace = itemSizeForTrackSizeComputationPhase(phase, gridItemWithSpan.gridItem()) - spanningTracksSize;
extraSpace = std::max<LayoutUnit>(extraSpace, 0);
auto& tracksToGrowBeyondGrowthLimits = growBeyondGrowthLimitsTracks.isEmpty() ? filteredTracks : growBeyondGrowthLimitsTracks;
distributeSpaceToTracks<phase>(filteredTracks, &tracksToGrowBeyondGrowthLimits, extraSpace);
}
for (const auto& trackIndex : m_contentSizedTracksIndex) {
GridTrack& track = allTracks[trackIndex];
markAsInfinitelyGrowableForTrackSizeComputationPhase(phase, track);
updateTrackSizeForTrackSizeComputationPhase(phase, track);
}
}
static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
// This check ensures that we respect the irreflexivity property of the strict weak ordering required by std::sort
// (forall x: NOT x < x).
bool track1HasInfiniteGrowthPotentialWithoutCap = track1->infiniteGrowthPotential() && !track1->growthLimitCap();
bool track2HasInfiniteGrowthPotentialWithoutCap = track2->infiniteGrowthPotential() && !track2->growthLimitCap();
if (track1HasInfiniteGrowthPotentialWithoutCap && track2HasInfiniteGrowthPotentialWithoutCap)
return false;
if (track1HasInfiniteGrowthPotentialWithoutCap || track2HasInfiniteGrowthPotentialWithoutCap)
return track2HasInfiniteGrowthPotentialWithoutCap;
LayoutUnit track1Limit = track1->growthLimitCap().value_or(track1->growthLimit());
LayoutUnit track2Limit = track2->growthLimitCap().value_or(track2->growthLimit());
return (track1Limit - track1->baseSize()) < (track2Limit - track2->baseSize());
}
static void clampGrowthShareIfNeeded(TrackSizeComputationPhase phase, const GridTrack& track, LayoutUnit& growthShare)
{
if (phase != ResolveMaxContentMaximums || !track.growthLimitCap())
return;
LayoutUnit distanceToCap = track.growthLimitCap().value() - track.tempSize();
if (distanceToCap <= 0)
return;
growthShare = std::min(growthShare, distanceToCap);
}
template <TrackSizeComputationPhase phase>
void GridTrackSizingAlgorithm::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* growBeyondGrowthLimitsTracks, LayoutUnit& freeSpace) const
{
ASSERT(freeSpace >= 0);
for (auto* track : tracks)
track->setTempSize(trackSizeForTrackSizeComputationPhase(phase, *track, ForbidInfinity));
if (freeSpace > 0) {
std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
unsigned tracksSize = tracks.size();
for (unsigned i = 0; i < tracksSize; ++i) {
GridTrack& track = *tracks[i];
const LayoutUnit& trackBreadth = trackSizeForTrackSizeComputationPhase(phase, track, ForbidInfinity);
bool infiniteGrowthPotential = track.infiniteGrowthPotential();
LayoutUnit trackGrowthPotential = infiniteGrowthPotential ? track.growthLimit() : track.growthLimit() - trackBreadth;
// Let's avoid computing availableLogicalSpaceShare as much as possible as it's a hot spot in performance tests.
if (trackGrowthPotential > 0 || infiniteGrowthPotential) {
LayoutUnit availableLogicalSpaceShare = freeSpace / (tracksSize - i);
LayoutUnit growthShare = infiniteGrowthPotential ? availableLogicalSpaceShare : std::min(availableLogicalSpaceShare, trackGrowthPotential);
clampGrowthShareIfNeeded(phase, track, growthShare);
ASSERT_WITH_MESSAGE(growthShare >= 0, "We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function. We can still have 0 as growthShare if the amount of tracks greatly exceeds the freeSpace.");
track.growTempSize(growthShare);
freeSpace -= growthShare;
}
}
}
if (freeSpace > 0 && growBeyondGrowthLimitsTracks) {
// We need to sort them because there might be tracks with growth limit caps (like the ones
// with fit-content()) which cannot indefinitely grow over the limits.
if (phase == ResolveMaxContentMaximums)
std::sort(growBeyondGrowthLimitsTracks->begin(), growBeyondGrowthLimitsTracks->end(), sortByGridTrackGrowthPotential);
unsigned tracksGrowingBeyondGrowthLimitsSize = growBeyondGrowthLimitsTracks->size();
for (unsigned i = 0; i < tracksGrowingBeyondGrowthLimitsSize; ++i) {
GridTrack* track = growBeyondGrowthLimitsTracks->at(i);
LayoutUnit growthShare = freeSpace / (tracksGrowingBeyondGrowthLimitsSize - i);
clampGrowthShareIfNeeded(phase, *track, growthShare);
track->growTempSize(growthShare);
freeSpace -= growthShare;
}
}
for (auto* track : tracks)
track->setPlannedSize(track->plannedSize() == infinity ? track->tempSize() : std::max(track->plannedSize(), track->tempSize()));
}
LayoutUnit GridTrackSizingAlgorithm::assumedRowsSizeForOrthogonalChild(const RenderBox& child) const
{
ASSERT(m_renderGrid->isOrthogonalChild(child));
const GridSpan& span = m_grid.gridItemSpan(child, ForRows);
LayoutUnit gridAreaSize;
bool gridAreaIsIndefinite = false;
LayoutUnit containingBlockAvailableSize = m_renderGrid->containingBlockLogicalHeightForContent(ExcludeMarginBorderPadding);
for (auto trackPosition : span) {
GridLength maxTrackSize = gridTrackSize(ForRows, trackPosition).maxTrackBreadth();
if (maxTrackSize.isContentSized() || maxTrackSize.isFlex())
gridAreaIsIndefinite = true;
else
gridAreaSize += valueForLength(maxTrackSize.length(), containingBlockAvailableSize);
}
gridAreaSize += m_renderGrid->guttersSize(m_grid, ForRows, span.startLine(), span.integerSpan(), availableSpace(ForRows));
return gridAreaIsIndefinite ? std::max(child.maxPreferredLogicalWidth(), gridAreaSize) : gridAreaSize;
}
LayoutUnit GridTrackSizingAlgorithm::gridAreaBreadthForChild(const RenderBox& child, GridTrackSizingDirection direction) const
{
// To determine the column track's size based on an orthogonal grid item we need it's logical
// height, which may depend on the row track's size. It's possible that the row tracks sizing
// logic has not been performed yet, so we will need to do an estimation.
if (direction == ForRows && m_sizingState == ColumnSizingFirstIteration)
return assumedRowsSizeForOrthogonalChild(child);
const Vector<GridTrack>& allTracks = tracks(direction);
const GridSpan& span = m_grid.gridItemSpan(child, direction);
LayoutUnit gridAreaBreadth = 0;
for (auto trackPosition : span)
gridAreaBreadth += allTracks[trackPosition].baseSize();
gridAreaBreadth += m_renderGrid->guttersSize(m_grid, direction, span.startLine(), span.integerSpan(), availableSpace(direction));
return gridAreaBreadth;
}
GridTrackSize GridTrackSizingAlgorithm::gridTrackSize(GridTrackSizingDirection direction, unsigned translatedIndex) const
{
// Collapse empty auto repeat tracks if auto-fit.
if (m_grid.hasAutoRepeatEmptyTracks(direction) && m_grid.isEmptyAutoRepeatTrack(direction, translatedIndex))
return { Length(Fixed), LengthTrackSizing };
auto& trackSize = rawGridTrackSize(direction, translatedIndex);
if (trackSize.isFitContent())
return trackSize;
GridLength minTrackBreadth = trackSize.minTrackBreadth();
GridLength maxTrackBreadth = trackSize.maxTrackBreadth();
// FIXME: Ensure this condition for determining whether a size is indefinite or not is working
// correctly for orthogonal flows.
if (minTrackBreadth.isPercentage() || maxTrackBreadth.isPercentage()) {
// FIXME: we should remove the second check later. We need it because during the second
// iteration of the algorithm we set definite sizes in the grid container so percents would
// not resolve properly (it would think that the height is definite when it is not).
if (!availableSpace(direction) || (direction == ForRows && !m_renderGrid->hasDefiniteLogicalHeight())) {
if (minTrackBreadth.isPercentage())
minTrackBreadth = Length(Auto);
if (maxTrackBreadth.isPercentage())
maxTrackBreadth = Length(Auto);
}
}
// Flex sizes are invalid as a min sizing function. However we still can have a flexible |minTrackBreadth|
// if the track size is just a flex size (e.g. "1fr"), the spec says that in this case it implies an automatic minimum.
if (minTrackBreadth.isFlex())
minTrackBreadth = Length(Auto);
return GridTrackSize(minTrackBreadth, maxTrackBreadth);
}
double GridTrackSizingAlgorithm::computeFlexFactorUnitSize(const Vector<GridTrack>& tracks, double flexFactorSum, LayoutUnit& leftOverSpace, const Vector<unsigned, 8>& flexibleTracksIndexes, std::unique_ptr<TrackIndexSet> tracksToTreatAsInflexible) const
{
// We want to avoid the effect of flex factors sum below 1 making the factor unit size to grow exponentially.
double hypotheticalFactorUnitSize = leftOverSpace / std::max<double>(1, flexFactorSum);
// product of the hypothetical "flex factor unit" and any flexible track's "flex factor" must be grater than such track's "base size".
bool validFlexFactorUnit = true;
for (auto index : flexibleTracksIndexes) {
if (tracksToTreatAsInflexible && tracksToTreatAsInflexible->contains(index))
continue;
LayoutUnit baseSize = tracks[index].baseSize();
double flexFactor = gridTrackSize(m_direction, index).maxTrackBreadth().flex();
// treating all such tracks as inflexible.
if (baseSize > hypotheticalFactorUnitSize * flexFactor) {
leftOverSpace -= baseSize;
flexFactorSum -= flexFactor;
if (!tracksToTreatAsInflexible)
tracksToTreatAsInflexible = std::unique_ptr<TrackIndexSet>(new TrackIndexSet());
tracksToTreatAsInflexible->add(index);
validFlexFactorUnit = false;
}
}
if (!validFlexFactorUnit)
return computeFlexFactorUnitSize(tracks, flexFactorSum, leftOverSpace, flexibleTracksIndexes, WTFMove(tracksToTreatAsInflexible));
return hypotheticalFactorUnitSize;
}
void GridTrackSizingAlgorithm::computeFlexSizedTracksGrowth(double flexFraction, Vector<LayoutUnit>& increments, LayoutUnit& totalGrowth) const
{
size_t numFlexTracks = m_flexibleSizedTracksIndex.size();
ASSERT(increments.size() == numFlexTracks);
const Vector<GridTrack>& allTracks = tracks(m_direction);
for (size_t i = 0; i < numFlexTracks; ++i) {
unsigned trackIndex = m_flexibleSizedTracksIndex[i];
auto trackSize = gridTrackSize(m_direction, trackIndex);
ASSERT(trackSize.maxTrackBreadth().isFlex());
LayoutUnit oldBaseSize = allTracks[trackIndex].baseSize();
LayoutUnit newBaseSize = std::max(oldBaseSize, LayoutUnit(flexFraction * trackSize.maxTrackBreadth().flex()));
increments[i] = newBaseSize - oldBaseSize;
totalGrowth += increments[i];
}
}
double GridTrackSizingAlgorithm::findFrUnitSize(const GridSpan& tracksSpan, LayoutUnit leftOverSpace) const
{
if (leftOverSpace <= 0)
return 0;
const Vector<GridTrack>& allTracks = tracks(m_direction);
double flexFactorSum = 0;
Vector<unsigned, 8> flexibleTracksIndexes;
for (auto trackIndex : tracksSpan) {
GridTrackSize trackSize = gridTrackSize(m_direction, trackIndex);
if (!trackSize.maxTrackBreadth().isFlex())
leftOverSpace -= allTracks[trackIndex].baseSize();
else {
double flexFactor = trackSize.maxTrackBreadth().flex();
flexibleTracksIndexes.append(trackIndex);
flexFactorSum += flexFactor;
}
}
// The function is not called if we don't have <flex> grid tracks.
ASSERT(!flexibleTracksIndexes.isEmpty());
return computeFlexFactorUnitSize(allTracks, flexFactorSum, leftOverSpace, flexibleTracksIndexes);
}
void GridTrackSizingAlgorithm::computeGridContainerIntrinsicSizes()
{
m_minContentSize = m_maxContentSize = LayoutUnit();
Vector<GridTrack>& allTracks = tracks(m_direction);
for (auto& track : allTracks) {
ASSERT(!track.infiniteGrowthPotential());
m_minContentSize += track.baseSize();
m_maxContentSize += track.growthLimit();
// The growth limit caps must be cleared now in order to properly sort
// tracks by growth potential on an eventual "Maximize Tracks".
track.setGrowthLimitCap(std::nullopt);
}
}
// GridTrackSizingAlgorithmStrategy.
LayoutUnit GridTrackSizingAlgorithmStrategy::logicalHeightForChild(RenderBox& child) const
{
GridTrackSizingDirection childBlockDirection = flowAwareDirectionForChild(renderGrid(), child, ForRows);
// If |child| has a relative logical height, we shouldn't let it override its intrinsic height, which is
// what we are interested in here. Thus we need to set the block-axis override size to -1 (no possible resolution).
if (shouldClearOverrideContainingBlockContentSizeForChild(child, ForRows)) {
setOverrideContainingBlockContentSizeForChild(child, childBlockDirection, std::nullopt);
child.setNeedsLayout(MarkOnlyThis);
}
// We need to clear the stretched height to properly compute logical height during layout.
if (child.needsLayout())
child.clearOverrideLogicalContentHeight();
child.layoutIfNeeded();
return child.logicalHeight() + child.marginLogicalHeight();
}
LayoutUnit GridTrackSizingAlgorithmStrategy::minContentForChild(RenderBox& child) const
{
GridTrackSizingDirection childInlineDirection = flowAwareDirectionForChild(renderGrid(), child, ForColumns);
if (direction() == childInlineDirection) {
// If |child| has a relative logical width, we shouldn't let it override its intrinsic width, which is
// what we are interested in here. Thus we need to set the override logical width to std::nullopt (no possible resolution).
if (shouldClearOverrideContainingBlockContentSizeForChild(child, ForColumns))
setOverrideContainingBlockContentSizeForChild(child, childInlineDirection, std::nullopt);
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
LayoutUnit marginLogicalWidth = child.needsLayout() ? computeMarginLogicalSizeForChild(childInlineDirection, *renderGrid(), child) : child.marginLogicalWidth();
return child.minPreferredLogicalWidth() + marginLogicalWidth;
}
if (updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection))
child.setNeedsLayout(MarkOnlyThis);
return logicalHeightForChild(child);
}
LayoutUnit GridTrackSizingAlgorithmStrategy::maxContentForChild(RenderBox& child) const
{
GridTrackSizingDirection childInlineDirection = flowAwareDirectionForChild(renderGrid(), child, ForColumns);
if (direction() == childInlineDirection) {
// If |child| has a relative logical width, we shouldn't let it override its intrinsic width, which is
// what we are interested in here. Thus we need to set the inline-axis override size to -1 (no possible resolution).
if (shouldClearOverrideContainingBlockContentSizeForChild(child, ForColumns))
setOverrideContainingBlockContentSizeForChild(child, childInlineDirection, std::nullopt);
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
LayoutUnit marginLogicalWidth = child.needsLayout() ? computeMarginLogicalSizeForChild(childInlineDirection, *renderGrid(), child) : child.marginLogicalWidth();
return child.maxPreferredLogicalWidth() + marginLogicalWidth;
}
if (updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection))
child.setNeedsLayout(MarkOnlyThis);
return logicalHeightForChild(child);
}
LayoutUnit GridTrackSizingAlgorithmStrategy::minSizeForChild(RenderBox& child) const
{
GridTrackSizingDirection childInlineDirection = flowAwareDirectionForChild(renderGrid(), child, ForColumns);
bool isRowAxis = direction() == childInlineDirection;
const Length& childMinSize = isRowAxis ? child.style().logicalMinWidth() : child.style().logicalMinHeight();
const Length& childSize = isRowAxis ? child.style().logicalWidth() : child.style().logicalHeight();
bool overflowIsVisible = isRowAxis ? child.style().overflowInlineDirection() == OVISIBLE : child.style().overflowBlockDirection() == OVISIBLE;
if (!childSize.isAuto() || (childMinSize.isAuto() && overflowIsVisible))
return minContentForChild(child);
bool overrideSizeHasChanged = updateOverrideContainingBlockContentSizeForChild(child, childInlineDirection);
if (isRowAxis)
return minLogicalWidthForChild(child, childMinSize, childInlineDirection);
layoutGridItemForMinSizeComputation(child, overrideSizeHasChanged);
return child.computeLogicalHeightUsing(MinSize, childMinSize, std::nullopt).value_or(0) + child.marginLogicalHeight() + child.scrollbarLogicalHeight();
}
bool GridTrackSizingAlgorithmStrategy::updateOverrideContainingBlockContentSizeForChild(RenderBox& child, GridTrackSizingDirection direction) const
{
LayoutUnit overrideSize = m_algorithm.gridAreaBreadthForChild(child, direction);
if (hasOverrideContainingBlockContentSizeForChild(child, direction) && overrideContainingBlockContentSizeForChild(child, direction) == overrideSize)
return false;
setOverrideContainingBlockContentSizeForChild(child, direction, overrideSize);
return true;
}
class IndefiniteSizeStrategy final : public GridTrackSizingAlgorithmStrategy {
public:
IndefiniteSizeStrategy(GridTrackSizingAlgorithm& algorithm)
: GridTrackSizingAlgorithmStrategy(algorithm) { }
private:
LayoutUnit minLogicalWidthForChild(RenderBox&, Length childMinSize, GridTrackSizingDirection) const override;
void layoutGridItemForMinSizeComputation(RenderBox&, bool overrideSizeHasChanged) const override;
void maximizeTracks(Vector<GridTrack>&, std::optional<LayoutUnit>& freeSpace) override;
double findUsedFlexFraction(Vector<unsigned>& flexibleSizedTracksIndex, GridTrackSizingDirection, std::optional<LayoutUnit> freeSpace) const override;
bool recomputeUsedFlexFractionIfNeeded(double& flexFraction, LayoutUnit& totalGrowth) const override;
};
LayoutUnit IndefiniteSizeStrategy::minLogicalWidthForChild(RenderBox& child, Length childMinSize, GridTrackSizingDirection childInlineDirection) const
{
return child.computeLogicalWidthInRegionUsing(MinSize, childMinSize, overrideContainingBlockContentSizeForChild(child, childInlineDirection).value_or(0), *renderGrid(), nullptr) + marginIntrinsicLogicalWidthForChild(renderGrid(), child);
}
void IndefiniteSizeStrategy::layoutGridItemForMinSizeComputation(RenderBox& child, bool overrideSizeHasChanged) const
{
if (overrideSizeHasChanged && direction() != ForColumns)
child.setNeedsLayout(MarkOnlyThis);
child.layoutIfNeeded();
}
void IndefiniteSizeStrategy::maximizeTracks(Vector<GridTrack>& tracks, std::optional<LayoutUnit>& freeSpace)
{
UNUSED_PARAM(freeSpace);
for (auto& track : tracks)
track.setBaseSize(track.growthLimit());
}
static inline double normalizedFlexFraction(const GridTrack& track, double flexFactor)
{
return track.baseSize() / std::max<double>(1, flexFactor);
}
double IndefiniteSizeStrategy::findUsedFlexFraction(Vector<unsigned>& flexibleSizedTracksIndex, GridTrackSizingDirection direction, std::optional<LayoutUnit> freeSpace) const
{
UNUSED_PARAM(freeSpace);
auto allTracks = m_algorithm.tracks(direction);
double flexFraction = 0;
for (const auto& trackIndex : flexibleSizedTracksIndex) {
// FIXME: we pass TrackSizing to gridTrackSize() because it does not really matter
// as we know the track is a flex sized track. It'd be nice not to have to do that.
flexFraction = std::max(flexFraction, normalizedFlexFraction(allTracks[trackIndex], m_algorithm.gridTrackSize(direction, trackIndex).maxTrackBreadth().flex()));
}
const Grid& grid = m_algorithm.grid();
if (!grid.hasGridItems())
return flexFraction;
for (unsigned i = 0; i < flexibleSizedTracksIndex.size(); ++i) {
GridIterator iterator(grid, direction, flexibleSizedTracksIndex[i]);
while (auto* gridItem = iterator.nextGridItem()) {
const GridSpan& span = grid.gridItemSpan(*gridItem, direction);
// Do not include already processed items.
if (i > 0 && span.startLine() <= flexibleSizedTracksIndex[i - 1])
continue;
flexFraction = std::max(flexFraction, findFrUnitSize(span, maxContentForChild(*gridItem)));
}
}
return flexFraction;
}
bool IndefiniteSizeStrategy::recomputeUsedFlexFractionIfNeeded(double& flexFraction, LayoutUnit& totalGrowth) const
{
if (direction() == ForColumns)
return false;
const RenderGrid* renderGrid = this->renderGrid();
auto minSize = renderGrid->computeContentLogicalHeight(MinSize, renderGrid->style().logicalMinHeight(), std::nullopt);
auto maxSize = renderGrid->computeContentLogicalHeight(MaxSize, renderGrid->style().logicalMaxHeight(), std::nullopt);
// Redo the flex fraction computation using min|max-height as definite available space in case
// the total height is smaller than min-height or larger than max-height.
LayoutUnit rowsSize = totalGrowth + computeTrackBasedSize();
bool checkMinSize = minSize && rowsSize < minSize.value();
bool checkMaxSize = maxSize && rowsSize > maxSize.value();
if (!checkMinSize && !checkMaxSize)
return false;
LayoutUnit freeSpace = checkMaxSize ? maxSize.value() : LayoutUnit(-1);
const Grid& grid = m_algorithm.grid();
freeSpace = std::max(freeSpace, minSize.value()) - renderGrid->guttersSize(grid, ForRows, 0, grid.numTracks(ForRows), availableSpace());
size_t numberOfTracks = m_algorithm.tracks(ForRows).size();
flexFraction = findFrUnitSize(GridSpan::translatedDefiniteGridSpan(0, numberOfTracks), freeSpace);
return true;
}
class DefiniteSizeStrategy final : public GridTrackSizingAlgorithmStrategy {
public:
DefiniteSizeStrategy(GridTrackSizingAlgorithm& algorithm)
: GridTrackSizingAlgorithmStrategy(algorithm) { }
private:
LayoutUnit minLogicalWidthForChild(RenderBox&, Length childMinSize, GridTrackSizingDirection) const override;
void layoutGridItemForMinSizeComputation(RenderBox&, bool overrideSizeHasChanged) const override;
void maximizeTracks(Vector<GridTrack>&, std::optional<LayoutUnit>& freeSpace) override;
double findUsedFlexFraction(Vector<unsigned>& flexibleSizedTracksIndex, GridTrackSizingDirection, std::optional<LayoutUnit> freeSpace) const override;
bool recomputeUsedFlexFractionIfNeeded(double& flexFraction, LayoutUnit& totalGrowth) const override;
};
LayoutUnit DefiniteSizeStrategy::minLogicalWidthForChild(RenderBox& child, Length childMinSize, GridTrackSizingDirection childInlineDirection) const
{
LayoutUnit marginLogicalWidth =
computeMarginLogicalSizeForChild(childInlineDirection, *renderGrid(), child);
return child.computeLogicalWidthInRegionUsing(MinSize, childMinSize, overrideContainingBlockContentSizeForChild(child, childInlineDirection).value_or(0), *renderGrid(), nullptr) + marginLogicalWidth;
}
void DefiniteSizeStrategy::maximizeTracks(Vector<GridTrack>& tracks, std::optional<LayoutUnit>& freeSpace)
{
size_t tracksSize = tracks.size();
Vector<GridTrack*> tracksForDistribution(tracksSize);
for (size_t i = 0; i < tracksSize; ++i) {
tracksForDistribution[i] = tracks.data() + i;
tracksForDistribution[i]->setPlannedSize(tracksForDistribution[i]->baseSize());
}
ASSERT(freeSpace);
distributeSpaceToTracks(tracksForDistribution, freeSpace.value());
for (auto* track : tracksForDistribution)
track->setBaseSize(track->plannedSize());
}
void DefiniteSizeStrategy::layoutGridItemForMinSizeComputation(RenderBox& child, bool overrideSizeHasChanged) const
{
if (overrideSizeHasChanged)
child.setNeedsLayout(MarkOnlyThis);
child.layoutIfNeeded();
}
double DefiniteSizeStrategy::findUsedFlexFraction(Vector<unsigned>&, GridTrackSizingDirection direction, std::optional<LayoutUnit> freeSpace) const
{
GridSpan allTracksSpan = GridSpan::translatedDefiniteGridSpan(0, m_algorithm.tracks(direction).size());
ASSERT(freeSpace);
return findFrUnitSize(allTracksSpan, freeSpace.value());
}
bool DefiniteSizeStrategy::recomputeUsedFlexFractionIfNeeded(double& flexFraction, LayoutUnit& totalGrowth) const
{
UNUSED_PARAM(flexFraction);
UNUSED_PARAM(totalGrowth);
return false;
}
// GridTrackSizingAlgorithm steps.
void GridTrackSizingAlgorithm::initializeTrackSizes()
{
ASSERT(m_contentSizedTracksIndex.isEmpty());
ASSERT(m_flexibleSizedTracksIndex.isEmpty());
ASSERT(m_autoSizedTracksForStretchIndex.isEmpty());
Vector<GridTrack>& allTracks = tracks(m_direction);
const bool hasDefiniteFreeSpace = !!availableSpace();
LayoutUnit maxSize = std::max(LayoutUnit(), availableSpace().value_or(LayoutUnit()));
// 1. Initialize per Grid track variables.
for (unsigned i = 0; i < allTracks.size(); ++i) {
GridTrack& track = allTracks[i];
const GridTrackSize& trackSize = gridTrackSize(m_direction, i);
track.setBaseSize(initialBaseSize(trackSize));
track.setGrowthLimit(initialGrowthLimit(trackSize, track.baseSize()));
track.setInfinitelyGrowable(false);
if (trackSize.isFitContent()) {
GridLength gridLength = trackSize.fitContentTrackBreadth();
if (!gridLength.isPercentage() || hasDefiniteFreeSpace)
track.setGrowthLimitCap(valueForLength(gridLength.length(), maxSize));
}
if (trackSize.isContentSized())
m_contentSizedTracksIndex.append(i);
if (trackSize.maxTrackBreadth().isFlex())
m_flexibleSizedTracksIndex.append(i);
if (trackSize.hasAutoMaxTrackBreadth() && !trackSize.isFitContent())
m_autoSizedTracksForStretchIndex.append(i);
}
}
void GridTrackSizingAlgorithm::resolveIntrinsicTrackSizes()
{
Vector<GridItemWithSpan> itemsSortedByIncreasingSpan;
HashSet<RenderBox*> itemsSet;
Vector<GridTrack>& allTracks = tracks(m_direction);
if (m_grid.hasGridItems()) {
for (auto trackIndex : m_contentSizedTracksIndex) {
GridIterator iterator(m_grid, m_direction, trackIndex);
GridTrack& track = allTracks[trackIndex];
while (auto* gridItem = iterator.nextGridItem()) {
if (itemsSet.add(gridItem).isNewEntry) {
const GridSpan& span = m_grid.gridItemSpan(*gridItem, m_direction);
if (span.integerSpan() == 1)
sizeTrackToFitNonSpanningItem(span, *gridItem, track);
else if (!spanningItemCrossesFlexibleSizedTracks(span))
itemsSortedByIncreasingSpan.append(GridItemWithSpan(*gridItem, span));
}
}
}
std::sort(itemsSortedByIncreasingSpan.begin(), itemsSortedByIncreasingSpan.end());
}
auto it = itemsSortedByIncreasingSpan.begin();
auto end = itemsSortedByIncreasingSpan.end();
while (it != end) {
GridItemsSpanGroupRange spanGroupRange = { it, std::upper_bound(it, end, *it) };
increaseSizesToAccommodateSpanningItems<ResolveIntrinsicMinimums>(spanGroupRange);
increaseSizesToAccommodateSpanningItems<ResolveContentBasedMinimums>(spanGroupRange);
increaseSizesToAccommodateSpanningItems<ResolveMaxContentMinimums>(spanGroupRange);
increaseSizesToAccommodateSpanningItems<ResolveIntrinsicMaximums>(spanGroupRange);
increaseSizesToAccommodateSpanningItems<ResolveMaxContentMaximums>(spanGroupRange);
it = spanGroupRange.rangeEnd;
}
for (auto trackIndex : m_contentSizedTracksIndex) {
GridTrack& track = allTracks[trackIndex];
if (track.growthLimit() == infinity)
track.setGrowthLimit(track.baseSize());
}
}
void GridTrackSizingAlgorithm::stretchFlexibleTracks(std::optional<LayoutUnit> freeSpace)
{
if (m_flexibleSizedTracksIndex.isEmpty())
return;
double flexFraction = m_strategy->findUsedFlexFraction(m_flexibleSizedTracksIndex, m_direction, freeSpace);
LayoutUnit totalGrowth;
Vector<LayoutUnit> increments;
increments.grow(m_flexibleSizedTracksIndex.size());
computeFlexSizedTracksGrowth(flexFraction, increments, totalGrowth);
if (m_strategy->recomputeUsedFlexFractionIfNeeded(flexFraction, totalGrowth)) {
totalGrowth = LayoutUnit();
computeFlexSizedTracksGrowth(flexFraction, increments, totalGrowth);
}
size_t i = 0;
Vector<GridTrack>& allTracks = tracks(m_direction);
for (auto trackIndex : m_flexibleSizedTracksIndex) {
auto& track = allTracks[trackIndex];
if (LayoutUnit increment = increments[i++])
track.setBaseSize(track.baseSize() + increment);
}
if (this->freeSpace(m_direction))
setFreeSpace(m_direction, this->freeSpace(m_direction).value() - totalGrowth);
m_maxContentSize += totalGrowth;
}
void GridTrackSizingAlgorithm::stretchAutoTracks()
{
auto currentFreeSpace = freeSpace(m_direction);
if (m_autoSizedTracksForStretchIndex.isEmpty()
|| !currentFreeSpace
|| currentFreeSpace.value() <= 0
|| (m_renderGrid->contentAlignment(m_direction).distribution() != ContentDistributionStretch))
return;
Vector<GridTrack>& allTracks = tracks(m_direction);
unsigned numberOfAutoSizedTracks = m_autoSizedTracksForStretchIndex.size();
LayoutUnit sizeToIncrease = currentFreeSpace.value() / numberOfAutoSizedTracks;
for (const auto& trackIndex : m_autoSizedTracksForStretchIndex) {
auto& track = allTracks[trackIndex];
track.setBaseSize(track.baseSize() + sizeToIncrease);
}
setFreeSpace(m_direction, LayoutUnit());
}
void GridTrackSizingAlgorithm::advanceNextState()
{
switch (m_sizingState) {
case ColumnSizingFirstIteration:
m_sizingState = RowSizingFirstIteration;
return;
case RowSizingFirstIteration:
m_sizingState = ColumnSizingSecondIteration;
return;
case ColumnSizingSecondIteration:
m_sizingState = RowSizingSecondIteration;
return;
case RowSizingSecondIteration:
m_sizingState = ColumnSizingFirstIteration;
return;
}
ASSERT_NOT_REACHED();
m_sizingState = ColumnSizingFirstIteration;
}
bool GridTrackSizingAlgorithm::isValidTransition() const
{
switch (m_sizingState) {
case ColumnSizingFirstIteration:
case ColumnSizingSecondIteration:
return m_direction == ForColumns;
case RowSizingFirstIteration:
case RowSizingSecondIteration:
return m_direction == ForRows;
}
ASSERT_NOT_REACHED();
return false;
}
// GridTrackSizingAlgorithm API.
void GridTrackSizingAlgorithm::setup(GridTrackSizingDirection direction, unsigned numTracks, SizingOperation sizingOperation, std::optional<LayoutUnit> availableSpace, std::optional<LayoutUnit> freeSpace)
{
ASSERT(m_needsSetup);
m_direction = direction;
setAvailableSpace(direction, availableSpace);
m_sizingOperation = sizingOperation;
switch (m_sizingOperation) {
case IntrinsicSizeComputation:
m_strategy = std::make_unique<IndefiniteSizeStrategy>(*this);
break;
case TrackSizing:
m_strategy = std::make_unique<DefiniteSizeStrategy>(*this);
break;
}
m_contentSizedTracksIndex.shrink(0);
m_flexibleSizedTracksIndex.shrink(0);
m_autoSizedTracksForStretchIndex.shrink(0);
setFreeSpace(direction, freeSpace);
tracks(direction).resize(numTracks);
m_needsSetup = false;
}
void GridTrackSizingAlgorithm::run()
{
StateMachine stateMachine(*this);
// Step 1.
const std::optional<LayoutUnit> initialFreeSpace = freeSpace(m_direction);
initializeTrackSizes();
// Step 2.
if (!m_contentSizedTracksIndex.isEmpty())
resolveIntrinsicTrackSizes();
// This is not exactly a step of the track sizing algorithm, but we use the track sizes computed
// up to this moment (before maximization) to calculate the grid container intrinsic sizes.
computeGridContainerIntrinsicSizes();
if (freeSpace(m_direction)) {
LayoutUnit updatedFreeSpace = freeSpace(m_direction).value() - m_minContentSize;
setFreeSpace(m_direction, updatedFreeSpace);
if (updatedFreeSpace <= 0)
return;
}
// Step 3.
m_strategy->maximizeTracks(tracks(m_direction), m_direction == ForColumns ? m_freeSpaceColumns : m_freeSpaceRows);
// Step 4.
stretchFlexibleTracks(initialFreeSpace);
// Step 5.
stretchAutoTracks();
}
void GridTrackSizingAlgorithm::reset()
{
m_sizingState = ColumnSizingFirstIteration;
m_columns.shrink(0);
m_rows.shrink(0);
m_contentSizedTracksIndex.shrink(0);
m_flexibleSizedTracksIndex.shrink(0);
m_autoSizedTracksForStretchIndex.shrink(0);
setAvailableSpace(ForRows, std::nullopt);
setAvailableSpace(ForColumns, std::nullopt);
}
#ifndef NDEBUG
bool GridTrackSizingAlgorithm::tracksAreWiderThanMinTrackBreadth() const
{
const Vector<GridTrack>& allTracks = tracks(m_direction);
for (size_t i = 0; i < allTracks.size(); ++i) {
GridTrackSize trackSize = gridTrackSize(m_direction, i);
if (initialBaseSize(trackSize) > allTracks[i].baseSize())
return false;
}
return true;
}
#endif
GridTrackSizingAlgorithm::StateMachine::StateMachine(GridTrackSizingAlgorithm& algorithm)
: m_algorithm(algorithm)
{
ASSERT(m_algorithm.isValidTransition());
ASSERT(!m_algorithm.m_needsSetup);
}
GridTrackSizingAlgorithm::StateMachine::~StateMachine()
{
m_algorithm.advanceNextState();
m_algorithm.m_needsSetup = true;
}
} // namespace WebCore
|