1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
|
/*
* Copyright (C) 2014 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "SimpleLineLayoutResolver.h"
#include "InlineTextBoxStyle.h"
#include "RenderBlockFlow.h"
#include "RenderObject.h"
#include "SimpleLineLayoutFunctions.h"
namespace WebCore {
namespace SimpleLineLayout {
static FloatPoint linePosition(float logicalLeft, float logicalTop)
{
return FloatPoint(logicalLeft, roundf(logicalTop));
}
static FloatSize lineSize(float logicalLeft, float logicalRight, float height)
{
return FloatSize(logicalRight - logicalLeft, height);
}
RunResolver::Run::Run(const Iterator& iterator)
: m_iterator(iterator)
{
}
String RunResolver::Run::textWithHyphen() const
{
auto& run = m_iterator.simpleRun();
ASSERT(run.hasHyphen);
// Empty runs should not have hyphen.
ASSERT(run.start < run.end);
auto& segment = m_iterator.resolver().m_flowContents.segmentForRun(run.start, run.end);
auto text = StringView(segment.text).substring(segment.toSegmentPosition(run.start), run.end - run.start);
return makeString(text, m_iterator.resolver().flow().style().hyphenString());
}
FloatRect RunResolver::Run::rect() const
{
auto& run = m_iterator.simpleRun();
auto& resolver = m_iterator.resolver();
float baseline = computeBaselinePosition();
FloatPoint position = linePosition(run.logicalLeft, baseline - resolver.m_ascent);
FloatSize size = lineSize(run.logicalLeft, run.logicalRight, resolver.m_ascent + resolver.m_descent + resolver.m_visualOverflowOffset);
bool moveLineBreakToBaseline = false;
if (run.start == run.end && m_iterator != resolver.begin() && m_iterator.inQuirksMode()) {
auto previousRun = m_iterator;
--previousRun;
moveLineBreakToBaseline = !previousRun.simpleRun().isEndOfLine;
}
if (moveLineBreakToBaseline)
return FloatRect(FloatPoint(position.x(), baseline), FloatSize(size.width(), std::max<float>(0, resolver.m_ascent - resolver.m_baseline.toFloat())));
return FloatRect(position, size);
}
StringView RunResolver::Run::text() const
{
auto& run = m_iterator.simpleRun();
ASSERT(run.start < run.end);
auto& segment = m_iterator.resolver().m_flowContents.segmentForRun(run.start, run.end);
// We currently split runs on segment boundaries (different RenderObject).
ASSERT(run.end <= segment.end);
return StringView(segment.text).substring(segment.toSegmentPosition(run.start), run.end - run.start);
}
RunResolver::Iterator::Iterator(const RunResolver& resolver, unsigned runIndex, unsigned lineIndex)
: m_resolver(resolver)
, m_runIndex(runIndex)
, m_lineIndex(lineIndex)
{
}
RunResolver::Iterator& RunResolver::Iterator::advance()
{
if (simpleRun().isEndOfLine)
++m_lineIndex;
++m_runIndex;
return *this;
}
RunResolver::Iterator& RunResolver::Iterator::advanceLines(unsigned lineCount)
{
unsigned runCount = m_resolver.m_layout.runCount();
if (runCount == m_resolver.m_layout.lineCount()) {
m_runIndex = std::min(runCount, m_runIndex + lineCount);
m_lineIndex = m_runIndex;
return *this;
}
unsigned target = m_lineIndex + lineCount;
while (m_lineIndex < target && m_runIndex < runCount)
advance();
return *this;
}
RunResolver::RunResolver(const RenderBlockFlow& flow, const Layout& layout)
: m_flowRenderer(flow)
, m_layout(layout)
, m_flowContents(flow)
, m_lineHeight(lineHeightFromFlow(flow))
, m_baseline(baselineFromFlow(flow))
, m_borderAndPaddingBefore(flow.borderAndPaddingBefore())
, m_ascent(flow.style().fontCascade().fontMetrics().ascent())
, m_descent(flow.style().fontCascade().fontMetrics().descent())
, m_visualOverflowOffset(visualOverflowForDecorations(flow.style(), nullptr).bottom)
, m_inQuirksMode(flow.document().inQuirksMode())
{
}
unsigned RunResolver::adjustLineIndexForStruts(LayoutUnit y, IndexType type, unsigned lineIndexCandidate) const
{
auto& struts = m_layout.struts();
// We need to offset the lineIndex with line struts when there's an actual strut before the candidate.
auto& strut = struts.first();
if (strut.lineBreak >= lineIndexCandidate)
return lineIndexCandidate;
unsigned strutIndex = 0;
std::optional<unsigned> lastIndexCandidate;
auto top = strut.lineBreak * m_lineHeight;
auto lineHeightWithOverflow = m_lineHeight;
// If font is larger than the line height (glyphs overflow), use the font size when checking line boundaries.
if (m_ascent + m_descent > m_lineHeight) {
lineHeightWithOverflow = m_ascent + m_descent;
top += m_baseline - m_ascent;
}
auto bottom = top + lineHeightWithOverflow;
for (auto lineIndex = strut.lineBreak; lineIndex < m_layout.lineCount(); ++lineIndex) {
float strutOffset = 0;
if (strutIndex < struts.size() && struts.at(strutIndex).lineBreak == lineIndex)
strutOffset = struts.at(strutIndex++).offset;
bottom = top + strutOffset + lineHeightWithOverflow;
if (y >= top && y < bottom) {
if (type == IndexType::First)
return lineIndex;
lastIndexCandidate = lineIndex;
} else if (lastIndexCandidate)
return *lastIndexCandidate;
top += m_lineHeight + strutOffset;
}
if (lastIndexCandidate || y >= bottom)
return m_layout.lineCount() - 1;
// We missed the line.
ASSERT_NOT_REACHED();
return lineIndexCandidate;
}
unsigned RunResolver::lineIndexForHeight(LayoutUnit height, IndexType type) const
{
ASSERT(m_lineHeight);
float y = height - m_borderAndPaddingBefore;
// Lines may overlap, adjust to get the first or last line at this height.
auto adjustedY = y;
if (type == IndexType::First)
adjustedY += m_lineHeight - (m_baseline + m_descent);
else
adjustedY -= m_baseline - m_ascent;
adjustedY = std::max<float>(adjustedY, 0);
auto lineIndexCandidate = std::min<unsigned>(adjustedY / m_lineHeight, m_layout.lineCount() - 1);
if (m_layout.hasLineStruts())
return adjustLineIndexForStruts(y, type, lineIndexCandidate);
return lineIndexCandidate;
}
WTF::IteratorRange<RunResolver::Iterator> RunResolver::rangeForRect(const LayoutRect& rect) const
{
if (!m_lineHeight)
return { begin(), end() };
unsigned firstLine = lineIndexForHeight(rect.y(), IndexType::First);
unsigned lastLine = std::max(firstLine, lineIndexForHeight(rect.maxY(), IndexType::Last));
auto rangeBegin = begin().advanceLines(firstLine);
if (rangeBegin == end())
return { end(), end() };
auto rangeEnd = rangeBegin;
ASSERT(lastLine >= firstLine);
rangeEnd.advanceLines(lastLine - firstLine + 1);
return { rangeBegin, rangeEnd };
}
WTF::IteratorRange<RunResolver::Iterator> RunResolver::rangeForRenderer(const RenderObject& renderer) const
{
if (begin() == end())
return { end(), end() };
FlowContents::Iterator segment = m_flowContents.begin();
auto run = begin();
ASSERT(segment->start <= (*run).start());
// Move run to the beginning of the segment.
while (&segment->renderer != &renderer && run != end()) {
if ((*run).start() == segment->start && (*run).end() == segment->end) {
++run;
++segment;
} else if ((*run).start() < segment->end)
++run;
else
++segment;
ASSERT(segment != m_flowContents.end());
}
// Do we actually have a run for this renderer?
// Collapsed whitespace with dedicated renderer could end up with no run at all.
if (run == end() || (segment->start != segment->end && segment->end <= (*run).start()))
return { end(), end() };
auto rangeBegin = run;
// Move beyond the end of the segment.
while (run != end() && (*run).start() < segment->end)
++run;
// Special case when segment == run.
if (run == rangeBegin)
++run;
return { rangeBegin, run };
}
RunResolver::Iterator RunResolver::runForPoint(const LayoutPoint& point) const
{
if (!m_lineHeight)
return end();
if (begin() == end())
return end();
unsigned lineIndex = lineIndexForHeight(point.y(), IndexType::Last);
auto x = point.x() - m_borderAndPaddingBefore;
auto it = begin();
it.advanceLines(lineIndex);
// Point is at the left side of the first run on this line.
if ((*it).logicalLeft() > x)
return it;
// Advance to the first candidate run on this line.
while (it != end() && (*it).logicalRight() < x && lineIndex == it.lineIndex())
++it;
// We jumped to the next line so the point is at the right side of the previous line.
if (it.lineIndex() > lineIndex)
return --it;
// Now we have a candidate run.
// Find the last run that still contains this point (taking overlapping runs with odd word spacing values into account).
while (it != end() && (*it).logicalLeft() <= x && lineIndex == it.lineIndex())
++it;
return --it;
}
WTF::IteratorRange<RunResolver::Iterator> RunResolver::rangeForRendererWithOffsets(const RenderObject& renderer, unsigned startOffset, unsigned endOffset) const
{
ASSERT(startOffset <= endOffset);
auto range = rangeForRenderer(renderer);
auto it = range.begin();
// Advance to the firt run with the start offset inside.
while (it != range.end() && (*it).end() <= startOffset)
++it;
if (it == range.end())
return { end(), end() };
auto rangeBegin = it;
// Special case empty ranges that start at the edge of the run. Apparently normal line layout include those.
if (endOffset == startOffset && (*it).start() == endOffset)
return { rangeBegin, ++it };
// Advance beyond the last run with the end offset.
while (it != range.end() && (*it).start() < endOffset)
++it;
return { rangeBegin, it };
}
LineResolver::Iterator::Iterator(RunResolver::Iterator runIterator)
: m_runIterator(runIterator)
{
}
FloatRect LineResolver::Iterator::operator*() const
{
unsigned currentLine = m_runIterator.lineIndex();
auto it = m_runIterator;
FloatRect rect = (*it).rect();
while (it.advance().lineIndex() == currentLine)
rect.unite((*it).rect());
return rect;
}
const RenderObject& LineResolver::Iterator::renderer() const
{
// FIXME: This works as long as we've got only one renderer per line.
auto run = *m_runIterator;
return m_runIterator.resolver().flowContents().segmentForRun(run.start(), run.end()).renderer;
}
LineResolver::LineResolver(const RenderBlockFlow& flow, const Layout& layout)
: m_runResolver(flow, layout)
{
}
}
}
|