1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272
|
/*
* Copyright (C) 2008-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "ExecutableAllocator.h"
#if ENABLE(JIT)
#include "ExecutableAllocationFuzz.h"
#include "IterationStatus.h"
#include "LinkBuffer.h"
#include <wtf/FastBitVector.h>
#include <wtf/FileSystem.h>
#include <wtf/PageReservation.h>
#include <wtf/ProcessID.h>
#include <wtf/RedBlackTree.h>
#include <wtf/Scope.h>
#include <wtf/SystemTracing.h>
#include <wtf/WorkQueue.h>
#if USE(LIBPAS_JIT_HEAP)
#include <bmalloc/jit_heap.h>
#else
#include <wtf/MetaAllocator.h>
#endif
#if HAVE(IOS_JIT_RESTRICTIONS)
#include <wtf/cocoa/Entitlements.h>
#endif
#if OS(DARWIN)
#include <fcntl.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
#if ENABLE(JIT_CAGE)
#include <WebKitAdditions/JITCageAdditions.h>
#else // ENABLE(JIT_CAGE)
#if OS(DARWIN)
#define MAP_EXECUTABLE_FOR_JIT MAP_JIT
#define MAP_EXECUTABLE_FOR_JIT_WITH_JIT_CAGE MAP_JIT
#else // OS(DARWIN)
#define MAP_EXECUTABLE_FOR_JIT 0
#define MAP_EXECUTABLE_FOR_JIT_WITH_JIT_CAGE 0
#endif // OS(DARWIN)
#endif // ENABLE(JIT_CAGE)
extern "C" {
/* Routine mach_vm_remap */
#ifdef mig_external
mig_external
#else
extern
#endif /* mig_external */
kern_return_t mach_vm_remap
(
vm_map_t target_task,
mach_vm_address_t *target_address,
mach_vm_size_t size,
mach_vm_offset_t mask,
int flags,
vm_map_t src_task,
mach_vm_address_t src_address,
boolean_t copy,
vm_prot_t *cur_protection,
vm_prot_t *max_protection,
vm_inherit_t inheritance
);
}
#endif
namespace JSC {
using namespace WTF;
#if defined(FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB) && FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB > 0
static constexpr size_t fixedExecutableMemoryPoolSize = FIXED_EXECUTABLE_MEMORY_POOL_SIZE_IN_MB * MB;
#elif CPU(ARM)
static constexpr size_t fixedExecutableMemoryPoolSize = 16 * MB;
#elif CPU(ARM64)
#if ENABLE(JUMP_ISLANDS)
static constexpr size_t fixedExecutableMemoryPoolSize = 512 * MB;
// These sizes guarantee that any jump within an island can jump forwards or backwards
// to the adjacent island in a single instruction.
static constexpr size_t regionSize = 112 * MB;
static constexpr size_t islandRegionSize = 16 * MB;
static constexpr size_t maxNumberOfRegions = fixedExecutableMemoryPoolSize / regionSize;
static constexpr size_t islandSizeInBytes = 4;
static constexpr size_t maxIslandsPerRegion = islandRegionSize / islandSizeInBytes;
#else
static constexpr size_t fixedExecutableMemoryPoolSize = 128 * MB;
#endif
#elif CPU(X86_64)
static constexpr size_t fixedExecutableMemoryPoolSize = 1 * GB;
#else
static constexpr size_t fixedExecutableMemoryPoolSize = 32 * MB;
#endif
#if CPU(ARM)
static constexpr double executablePoolReservationFraction = 0.15;
#else
static constexpr double executablePoolReservationFraction = 0.25;
#endif
#if USE(LIBPAS_JIT_HEAP)
// This size is derived from jit_config's medium table size.
static constexpr size_t minimumExecutablePoolReservationSize = 256 * KB;
static_assert(fixedExecutableMemoryPoolSize * executablePoolReservationFraction >= minimumExecutablePoolReservationSize);
static_assert(fixedExecutableMemoryPoolSize < 4 * GB, "ExecutableMemoryHandle assumes it is less than 4GB");
#endif
static bool isJITEnabled()
{
bool jitEnabled = !g_jscConfig.jitDisabled;
#if HAVE(IOS_JIT_RESTRICTIONS)
return processHasEntitlement("dynamic-codesigning") && jitEnabled;
#else
return jitEnabled;
#endif
}
void ExecutableAllocator::setJITEnabled(bool enabled)
{
bool jitEnabled = !g_jscConfig.jitDisabled;
ASSERT(!g_jscConfig.fixedVMPoolExecutableAllocator);
if (jitEnabled == enabled)
return;
g_jscConfig.jitDisabled = !enabled;
#if HAVE(IOS_JIT_RESTRICTIONS)
if (!enabled) {
// Because of an OS quirk, even after the JIT region has been unmapped,
// the OS thinks that region is reserved, and as such, can cause Gigacage
// allocation to fail. We work around this by initializing the Gigacage
// first.
// Note: when called, setJITEnabled() is always called extra early in the
// process bootstrap. Under normal operation (when setJITEnabled() isn't
// called at all), we will naturally initialize the Gigacage before we
// allocate the JIT region. Hence, this workaround is merely ensuring the
// same behavior of allocation ordering.
Gigacage::ensureGigacage();
constexpr size_t size = 1;
constexpr int protection = PROT_READ | PROT_WRITE | PROT_EXEC;
constexpr int fd = OSAllocator::JSJITCodePages;
int flags = MAP_PRIVATE | MAP_ANON | (Options::useJITCage() ? MAP_EXECUTABLE_FOR_JIT_WITH_JIT_CAGE : MAP_EXECUTABLE_FOR_JIT);
void* allocation = mmap(nullptr, size, protection, flags, fd, 0);
const void* executableMemoryAllocationFailure = reinterpret_cast<void*>(-1);
RELEASE_ASSERT_WITH_MESSAGE(allocation && allocation != executableMemoryAllocationFailure, "We should not have allocated executable memory before disabling the JIT.");
RELEASE_ASSERT_WITH_MESSAGE(!munmap(allocation, size), "Unmapping executable memory should succeed so we do not have any executable memory in the address space");
RELEASE_ASSERT_WITH_MESSAGE(mmap(nullptr, size, protection, flags, fd, 0) == executableMemoryAllocationFailure, "Allocating executable memory should fail after setJITEnabled(false) is called.");
}
#endif
}
#if OS(DARWIN) && HAVE(REMAP_JIT)
#if USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION)
static ALWAYS_INLINE MacroAssemblerCodeRef<JITThunkPtrTag> jitWriteThunkGenerator(void* writableAddr, void* stubBase, size_t stubSize)
{
auto exitScope = makeScopeExit([] {
RELEASE_ASSERT(!g_jscConfig.useFastJITPermissions);
});
using namespace ARM64Registers;
using TrustedImm32 = MacroAssembler::TrustedImm32;
MacroAssembler jit;
jit.tagReturnAddress();
jit.move(MacroAssembler::TrustedImmPtr(writableAddr), x7);
jit.addPtr(x7, x0);
jit.move(x0, x3);
MacroAssembler::Jump smallCopy = jit.branch64(MacroAssembler::Below, x2, MacroAssembler::TrustedImm64(64));
jit.add64(TrustedImm32(32), x3);
jit.and64(TrustedImm32(-32), x3);
jit.loadPair64(x1, x12, x13);
jit.loadPair64(x1, TrustedImm32(16), x14, x15);
jit.sub64(x3, x0, x5);
jit.addPtr(x5, x1);
jit.loadPair64(x1, x8, x9);
jit.loadPair64(x1, TrustedImm32(16), x10, x11);
jit.add64(TrustedImm32(32), x1);
jit.sub64(x5, x2);
jit.storePair64(x12, x13, x0);
jit.storePair64(x14, x15, x0, TrustedImm32(16));
MacroAssembler::Jump cleanup = jit.branchSub64(MacroAssembler::BelowOrEqual, TrustedImm32(64), x2);
MacroAssembler::Label copyLoop = jit.label();
jit.storePair64WithNonTemporalAccess(x8, x9, x3);
jit.storePair64WithNonTemporalAccess(x10, x11, x3, TrustedImm32(16));
jit.add64(TrustedImm32(32), x3);
jit.loadPair64WithNonTemporalAccess(x1, x8, x9);
jit.loadPair64WithNonTemporalAccess(x1, TrustedImm32(16), x10, x11);
jit.add64(TrustedImm32(32), x1);
jit.branchSub64(MacroAssembler::Above, TrustedImm32(32), x2).linkTo(copyLoop, &jit);
cleanup.link(&jit);
jit.add64(x2, x1);
jit.loadPair64(x1, x12, x13);
jit.loadPair64(x1, TrustedImm32(16), x14, x15);
jit.storePair64(x8, x9, x3);
jit.storePair64(x10, x11, x3, TrustedImm32(16));
jit.addPtr(x2, x3);
jit.storePair64(x12, x13, x3, TrustedImm32(32));
jit.storePair64(x14, x15, x3, TrustedImm32(48));
jit.ret();
MacroAssembler::Label local0 = jit.label();
jit.load64(MacroAssembler::PostIndexAddress(x1, 8), x6);
jit.store64(x6, MacroAssembler::PostIndexAddress(x3, 8));
smallCopy.link(&jit);
jit.branchSub64(MacroAssembler::AboveOrEqual, TrustedImm32(8), x2).linkTo(local0, &jit);
MacroAssembler::Jump local2 = jit.branchAdd64(MacroAssembler::Equal, TrustedImm32(8), x2);
MacroAssembler::Label local1 = jit.label();
jit.load8(x1, PostIndex(1), x6);
jit.store8(x6, x3, PostIndex(1));
jit.branchSub64(MacroAssembler::NotEqual, TrustedImm32(1), x2).linkTo(local1, &jit);
local2.link(&jit);
jit.ret();
auto stubBaseCodePtr = MacroAssemblerCodePtr<LinkBufferPtrTag>(tagCodePtr<LinkBufferPtrTag>(stubBase));
LinkBuffer linkBuffer(jit, stubBaseCodePtr, stubSize, LinkBuffer::Profile::Thunk);
// We don't use FINALIZE_CODE() for two reasons.
// The first is that we don't want the writeable address, as disassembled instructions,
// to appear in the console or anywhere in memory, via the PrintStream buffer.
// The second is we can't guarantee that the code is readable when using the
// asyncDisassembly option as our caller will set our pages execute only.
return linkBuffer.finalizeCodeWithoutDisassembly<JITThunkPtrTag>();
}
#else // not USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION)
static void genericWriteToJITRegion(off_t offset, const void* data, size_t dataSize)
{
memcpy((void*)(g_jscConfig.startOfFixedWritableMemoryPool + offset), data, dataSize);
}
static MacroAssemblerCodeRef<JITThunkPtrTag> ALWAYS_INLINE jitWriteThunkGenerator(void* address, void*, size_t)
{
g_jscConfig.startOfFixedWritableMemoryPool = reinterpret_cast<uintptr_t>(address);
void* function = reinterpret_cast<void*>(&genericWriteToJITRegion);
#if CPU(ARM_THUMB2)
// Handle thumb offset
uintptr_t functionAsInt = reinterpret_cast<uintptr_t>(function);
functionAsInt -= 1;
function = reinterpret_cast<void*>(functionAsInt);
#endif
auto codePtr = MacroAssemblerCodePtr<JITThunkPtrTag>(tagCFunctionPtr<JITThunkPtrTag>(function));
return MacroAssemblerCodeRef<JITThunkPtrTag>::createSelfManagedCodeRef(codePtr);
}
#endif // USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION)
static ALWAYS_INLINE void initializeSeparatedWXHeaps(void* stubBase, size_t stubSize, void* jitBase, size_t jitSize)
{
auto exitScope = makeScopeExit([] {
RELEASE_ASSERT(!g_jscConfig.useFastJITPermissions);
});
mach_vm_address_t writableAddr = 0;
// Create a second mapping of the JIT region at a random address.
vm_prot_t cur, max;
int remapFlags = VM_FLAGS_ANYWHERE;
#if defined(VM_FLAGS_RANDOM_ADDR)
remapFlags |= VM_FLAGS_RANDOM_ADDR;
#endif
kern_return_t ret = mach_vm_remap(mach_task_self(), &writableAddr, jitSize, 0,
remapFlags,
mach_task_self(), (mach_vm_address_t)jitBase, FALSE,
&cur, &max, VM_INHERIT_DEFAULT);
bool remapSucceeded = (ret == KERN_SUCCESS);
if (!remapSucceeded)
return;
// Assemble a thunk that will serve as the means for writing into the JIT region.
MacroAssemblerCodeRef<JITThunkPtrTag> writeThunk = jitWriteThunkGenerator(reinterpret_cast<void*>(writableAddr), stubBase, stubSize);
int result = 0;
#if USE(EXECUTE_ONLY_JIT_WRITE_FUNCTION)
// Prevent reading the write thunk code.
result = vm_protect(mach_task_self(), reinterpret_cast<vm_address_t>(stubBase), stubSize, true, VM_PROT_EXECUTE);
RELEASE_ASSERT(!result);
#endif
// Prevent writing into the executable JIT mapping.
result = vm_protect(mach_task_self(), reinterpret_cast<vm_address_t>(jitBase), jitSize, true, VM_PROT_READ | VM_PROT_EXECUTE);
RELEASE_ASSERT(!result);
// Prevent execution in the writable JIT mapping.
result = vm_protect(mach_task_self(), static_cast<vm_address_t>(writableAddr), jitSize, true, VM_PROT_READ | VM_PROT_WRITE);
RELEASE_ASSERT(!result);
// Zero out writableAddr to avoid leaking the address of the writable mapping.
memset_s(&writableAddr, sizeof(writableAddr), 0, sizeof(writableAddr));
#if ENABLE(SEPARATED_WX_HEAP)
g_jscConfig.jitWriteSeparateHeaps = reinterpret_cast<JITWriteSeparateHeapsFunction>(writeThunk.code().executableAddress());
#endif
}
#else // OS(DARWIN) && HAVE(REMAP_JIT)
static ALWAYS_INLINE void initializeSeparatedWXHeaps(void*, size_t, void*, size_t)
{
}
#endif
struct JITReservation {
PageReservation pageReservation;
void* base { nullptr };
size_t size { 0 };
};
static ALWAYS_INLINE JITReservation initializeJITPageReservation()
{
JITReservation reservation;
if (!isJITEnabled())
return reservation;
reservation.size = fixedExecutableMemoryPoolSize;
if (Options::jitMemoryReservationSize()) {
reservation.size = Options::jitMemoryReservationSize();
#if USE(LIBPAS_JIT_HEAP)
if (reservation.size * executablePoolReservationFraction < minimumExecutablePoolReservationSize)
reservation.size += minimumExecutablePoolReservationSize;
#endif
#if ENABLE(JUMP_ISLANDS)
// If asked for a reservation smaller than island size, assume that we want that size allocation
// plus an island. The alternative would be to turn off jump islands, but since we only use
// this for testing, this is probably the easier way to do it.
//
// The main reason for this is that some JSC stress tests run with a 50KB pool. This hack means
// we don't have to change anything about those tests.
if (reservation.size < islandRegionSize)
reservation.size += islandRegionSize;
#endif // ENABLE(JUMP_ISLANDS)
}
reservation.size = std::max(roundUpToMultipleOf(pageSize(), reservation.size), pageSize() * 2);
auto tryCreatePageReservation = [] (size_t reservationSize) {
#if OS(LINUX)
// If we use uncommitted reservation, mmap operation is recorded with small page size in perf command's output.
// This makes the following JIT code logging broken and some of JIT code is not recorded correctly.
// To avoid this problem, we use committed reservation if we need perf JITDump logging.
if (Options::logJITCodeForPerf())
return PageReservation::reserveAndCommitWithGuardPages(reservationSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true, false);
#endif
if (Options::useJITCage())
return PageReservation::reserve(reservationSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true, Options::useJITCage());
return PageReservation::reserveWithGuardPages(reservationSize, OSAllocator::JSJITCodePages, EXECUTABLE_POOL_WRITABLE, true, false);
};
reservation.pageReservation = tryCreatePageReservation(reservation.size);
if (Options::verboseExecutablePoolAllocation())
dataLog(getpid(), ": Got executable pool reservation at ", RawPointer(reservation.pageReservation.base()), "...", RawPointer(bitwise_cast<char*>(reservation.pageReservation.base()) + reservation.pageReservation.size()), ", while I'm at ", RawPointer(bitwise_cast<void*>(initializeJITPageReservation)), "\n");
if (reservation.pageReservation) {
ASSERT(reservation.pageReservation.size() == reservation.size);
reservation.base = reservation.pageReservation.base();
bool fastJITPermissionsIsSupported = false;
#if OS(DARWIN) && CPU(ARM64)
#if USE(PTHREAD_JIT_PERMISSIONS_API)
fastJITPermissionsIsSupported = !!pthread_jit_write_protect_supported_np();
#elif USE(APPLE_INTERNAL_SDK)
fastJITPermissionsIsSupported = !!os_thread_self_restrict_rwx_is_supported();
#endif
#endif
g_jscConfig.useFastJITPermissions = fastJITPermissionsIsSupported;
if (g_jscConfig.useFastJITPermissions)
threadSelfRestrictRWXToRX();
#if ENABLE(SEPARATED_WX_HEAP)
if (!g_jscConfig.useFastJITPermissions) {
// First page of our JIT allocation is reserved.
ASSERT(reservation.size >= pageSize() * 2);
reservation.base = (void*)((uintptr_t)(reservation.base) + pageSize());
reservation.size -= pageSize();
initializeSeparatedWXHeaps(reservation.pageReservation.base(), pageSize(), reservation.base, reservation.size);
}
#endif
void* reservationEnd = reinterpret_cast<uint8_t*>(reservation.base) + reservation.size;
g_jscConfig.startExecutableMemory = tagCodePtr<ExecutableMemoryPtrTag>(reservation.base);
g_jscConfig.endExecutableMemory = tagCodePtr<ExecutableMemoryPtrTag>(reservationEnd);
}
return reservation;
}
class FixedVMPoolExecutableAllocator final {
WTF_MAKE_FAST_ALLOCATED;
#if ENABLE(JUMP_ISLANDS)
class Islands;
class RegionAllocator;
#endif
public:
FixedVMPoolExecutableAllocator()
#if ENABLE(JUMP_ISLANDS)
: m_allocators(constructFixedSizeArrayWithArguments<RegionAllocator, maxNumberOfRegions>(*this))
, m_numAllocators(maxNumberOfRegions)
#else
: m_allocator(*this)
#endif
{
JITReservation reservation = initializeJITPageReservation();
m_reservation = WTFMove(reservation.pageReservation);
if (m_reservation) {
#if ENABLE(JUMP_ISLANDS)
uintptr_t start = bitwise_cast<uintptr_t>(memoryStart());
uintptr_t reservationEnd = bitwise_cast<uintptr_t>(memoryEnd());
for (size_t i = 0; i < maxNumberOfRegions; ++i) {
RELEASE_ASSERT(start < reservationEnd || Options::jitMemoryReservationSize());
if (start >= reservationEnd) {
m_numAllocators = i;
break;
}
m_allocators[i].m_start = tagCodePtr<ExecutableMemoryPtrTag>(bitwise_cast<void*>(start));
m_allocators[i].m_end = tagCodePtr<ExecutableMemoryPtrTag>(bitwise_cast<void*>(start + regionSize));
if (m_allocators[i].end() > reservationEnd) {
// We may have taken a page for the executable only copy thunk.
RELEASE_ASSERT(i == maxNumberOfRegions - 1 || Options::jitMemoryReservationSize());
m_allocators[i].m_end = tagCodePtr<ExecutableMemoryPtrTag>(bitwise_cast<void*>(reservationEnd));
}
size_t sizeInBytes = m_allocators[i].allocatorSize();
m_allocators[i].addFreshFreeSpace(bitwise_cast<void*>(m_allocators[i].start()), sizeInBytes);
m_bytesReserved += sizeInBytes;
RELEASE_ASSERT(m_allocators[i].allocatorSize() < regionSize);
RELEASE_ASSERT(m_allocators[i].islandBegin() > m_allocators[i].start());
RELEASE_ASSERT(m_allocators[i].islandBegin() < m_allocators[i].end());
start += regionSize;
}
#else
m_allocator.addFreshFreeSpace(reservation.base, reservation.size);
m_bytesReserved += reservation.size;
#endif
}
}
~FixedVMPoolExecutableAllocator()
{
m_reservation.deallocate();
}
void* memoryStart() { return untagCodePtr<ExecutableMemoryPtrTag>(g_jscConfig.startExecutableMemory); }
void* memoryEnd() { return untagCodePtr<ExecutableMemoryPtrTag>(g_jscConfig.endExecutableMemory); }
bool isJITPC(void* pc) { return memoryStart() <= pc && pc < memoryEnd(); }
bool isValid() { return !!m_reservation; }
RefPtr<ExecutableMemoryHandle> allocate(size_t sizeInBytes)
{
#if USE(LIBPAS_JIT_HEAP)
auto result = ExecutableMemoryHandle::createImpl(sizeInBytes);
if (LIKELY(result))
m_bytesAllocated.fetch_add(result->sizeInBytes(), std::memory_order_relaxed);
return result;
#elif ENABLE(JUMP_ISLANDS)
Locker locker { getLock() };
unsigned start = 0;
if (Options::useRandomizingExecutableIslandAllocation())
start = cryptographicallyRandomNumber() % m_numAllocators;
unsigned i = start;
while (true) {
RegionAllocator& allocator = m_allocators[i];
if (RefPtr<ExecutableMemoryHandle> result = allocator.allocate(locker, sizeInBytes))
return result;
i = (i + 1) % m_numAllocators;
if (i == start)
break;
}
return nullptr;
#else
return m_allocator.allocate(sizeInBytes);
#endif // ENABLE(JUMP_ISLANDS)
}
Lock& getLock() WTF_RETURNS_LOCK(m_lock) { return m_lock; }
#if USE(LIBPAS_JIT_HEAP)
void shrinkBytesAllocated(size_t oldSizeInBytes, size_t newSizeInBytes)
{
m_bytesAllocated.fetch_add(newSizeInBytes - oldSizeInBytes, std::memory_order_relaxed);
}
#endif
// Non atomic
size_t bytesAllocated()
{
#if USE(LIBPAS_JIT_HEAP)
return m_bytesAllocated.load(std::memory_order_relaxed);
#else
size_t result = 0;
forEachAllocator([&] (Allocator& allocator) {
result += allocator.bytesAllocated();
});
return result;
#endif
}
size_t bytesReserved() const
{
return m_bytesReserved;
}
size_t bytesAvailable()
{
size_t bytesReserved = this->bytesReserved();
#if USE(LIBPAS_JIT_HEAP)
size_t nonAvailableSize = static_cast<size_t>(bytesReserved * executablePoolReservationFraction);
if (nonAvailableSize < minimumExecutablePoolReservationSize)
return bytesReserved - minimumExecutablePoolReservationSize;
return bytesReserved - nonAvailableSize;
#else
return static_cast<size_t>(bytesReserved * (1 - executablePoolReservationFraction));
#endif
}
#if !USE(LIBPAS_JIT_HEAP)
size_t bytesCommitted()
{
size_t result = 0;
forEachAllocator([&] (Allocator& allocator) {
result += allocator.bytesCommitted();
});
return result;
}
#endif
bool isInAllocatedMemory(const AbstractLocker& locker, void* address)
{
#if ENABLE(JUMP_ISLANDS)
if (RegionAllocator* allocator = findRegion(bitwise_cast<uintptr_t>(address)))
return allocator->isInAllocatedMemory(locker, address);
return false;
#else
return m_allocator.isInAllocatedMemory(locker, address);
#endif
}
#if ENABLE(META_ALLOCATOR_PROFILE)
void dumpProfile()
{
forEachAllocator([&] (Allocator& allocator) {
allocator.dumpProfile();
});
}
#endif
#if !USE(LIBPAS_JIT_HEAP)
MetaAllocator::Statistics currentStatistics()
{
Locker locker { getLock() };
MetaAllocator::Statistics result { 0, 0, 0 };
forEachAllocator([&] (Allocator& allocator) {
auto allocatorStats = allocator.currentStatistics(locker);
result.bytesAllocated += allocatorStats.bytesAllocated;
result.bytesReserved += allocatorStats.bytesReserved;
result.bytesCommitted += allocatorStats.bytesCommitted;
});
return result;
}
#endif // !USE(LIBPAS_JIT_HEAP)
#if USE(LIBPAS_JIT_HEAP)
void handleWillBeReleased(ExecutableMemoryHandle& handle, size_t sizeInBytes)
{
m_bytesAllocated.fetch_sub(sizeInBytes, std::memory_order_relaxed);
#if ENABLE(JUMP_ISLANDS)
if (m_islandsForJumpSourceLocation.isEmpty())
return;
Locker locker { getLock() };
handleWillBeReleased(locker, handle);
#else // ENABLE(JUMP_ISLANDS) -> so !ENABLE(JUMP_ISLANDS)
UNUSED_PARAM(handle);
#endif // ENABLE(JUMP_ISLANDS) -> so end of !ENABLE(JUMP_ISLANDS)
}
#endif // USE(LIBPAS_JIT_HEAP)
#if ENABLE(JUMP_ISLANDS)
void handleWillBeReleased(const LockHolder& locker, ExecutableMemoryHandle& handle)
{
if (m_islandsForJumpSourceLocation.isEmpty())
return;
Vector<Islands*, 16> toRemove;
void* start = handle.start().untaggedPtr();
void* end = handle.end().untaggedPtr();
m_islandsForJumpSourceLocation.iterate([&] (Islands& islands, bool& visitLeft, bool& visitRight) {
if (start <= islands.key() && islands.key() < end)
toRemove.append(&islands);
if (islands.key() > start)
visitLeft = true;
if (islands.key() < end)
visitRight = true;
});
for (Islands* islands : toRemove)
freeIslands(locker, islands);
if (ASSERT_ENABLED) {
m_islandsForJumpSourceLocation.iterate([&] (Islands& islands, bool& visitLeft, bool& visitRight) {
if (start <= islands.key() && islands.key() < end) {
dataLogLn("did not remove everything!");
RELEASE_ASSERT_NOT_REACHED();
}
visitLeft = true;
visitRight = true;
});
}
}
void* makeIsland(uintptr_t jumpLocation, uintptr_t newTarget, bool concurrently)
{
Locker locker { getLock() };
return islandForJumpLocation(locker, jumpLocation, newTarget, concurrently);
}
private:
RegionAllocator* findRegion(uintptr_t ptr)
{
RegionAllocator* result = nullptr;
forEachAllocator([&] (RegionAllocator& allocator) {
if (allocator.start() <= ptr && ptr < allocator.end()) {
result = &allocator;
return IterationStatus::Done;
}
return IterationStatus::Continue;
});
return result;
}
void freeJumpIslands(const LockHolder&, Islands* islands)
{
for (CodeLocationLabel<ExecutableMemoryPtrTag> jumpIsland : islands->jumpIslands) {
uintptr_t untaggedJumpIsland = bitwise_cast<uintptr_t>(jumpIsland.dataLocation());
RegionAllocator* allocator = findRegion(untaggedJumpIsland);
RELEASE_ASSERT(allocator);
allocator->freeIsland(untaggedJumpIsland);
}
islands->jumpIslands.clear();
}
void freeIslands(const LockHolder& locker, Islands* islands)
{
freeJumpIslands(locker, islands);
m_islandsForJumpSourceLocation.remove(islands);
delete islands;
}
void* islandForJumpLocation(const LockHolder& locker, uintptr_t jumpLocation, uintptr_t target, bool concurrently)
{
Islands* islands = m_islandsForJumpSourceLocation.findExact(bitwise_cast<void*>(jumpLocation));
if (islands) {
// FIXME: We could create some method of reusing already allocated islands here, but it's
// unlikely to matter in practice.
if (!concurrently)
freeJumpIslands(locker, islands);
} else {
islands = new Islands;
islands->jumpSourceLocation = CodeLocationLabel<ExecutableMemoryPtrTag>(tagCodePtr<ExecutableMemoryPtrTag>(bitwise_cast<void*>(jumpLocation)));
m_islandsForJumpSourceLocation.insert(islands);
}
RegionAllocator* allocator = findRegion(jumpLocation > target ? jumpLocation - regionSize : jumpLocation);
RELEASE_ASSERT(allocator);
void* result = allocator->allocateIsland();
void* currentIsland = result;
jumpLocation = bitwise_cast<uintptr_t>(currentIsland);
while (true) {
islands->jumpIslands.append(CodeLocationLabel<ExecutableMemoryPtrTag>(tagCodePtr<ExecutableMemoryPtrTag>(currentIsland)));
auto emitJumpTo = [&] (void* target) {
RELEASE_ASSERT(ARM64Assembler::canEmitJump(bitwise_cast<void*>(jumpLocation), target));
MacroAssembler jit;
auto jump = jit.jump();
LinkBuffer linkBuffer(jit, MacroAssemblerCodePtr<NoPtrTag>(currentIsland), islandSizeInBytes, LinkBuffer::Profile::JumpIsland, JITCompilationMustSucceed, false);
RELEASE_ASSERT(linkBuffer.isValid());
// We use this to appease the assertion that we're not finalizing on a compiler thread. In this situation, it's
// ok to do this on a compiler thread, since the compiler thread is linking a jump to this code (and no other live
// code can jump to these islands). It's ok because the CPU protocol for exposing code to other CPUs is:
// - Self modifying code fence (what FINALIZE_CODE does below). This does various memory flushes + instruction sync barrier (isb).
// - Any CPU that will run the code must run a crossModifyingCodeFence (isb) before running it. Since the code that
// has a jump linked to this island hasn't finalized yet, they're guaranteed to finalize there code and run an isb.
linkBuffer.setIsJumpIsland();
linkBuffer.link(jump, CodeLocationLabel<NoPtrTag>(target));
FINALIZE_CODE(linkBuffer, NoPtrTag, "Jump Island: %lu", jumpLocation);
};
if (ARM64Assembler::canEmitJump(bitwise_cast<void*>(jumpLocation), bitwise_cast<void*>(target))) {
emitJumpTo(bitwise_cast<void*>(target));
break;
}
uintptr_t nextIslandRegion;
if (jumpLocation > target)
nextIslandRegion = jumpLocation - regionSize;
else
nextIslandRegion = jumpLocation + regionSize;
RegionAllocator* allocator = findRegion(nextIslandRegion);
RELEASE_ASSERT(allocator);
void* nextIsland = allocator->allocateIsland();
emitJumpTo(nextIsland);
jumpLocation = bitwise_cast<uintptr_t>(nextIsland);
currentIsland = nextIsland;
}
return result;
}
#endif // ENABLE(JUMP_ISLANDS)
private:
class Allocator
#if !USE(LIBPAS_JIT_HEAP)
: public MetaAllocator
#endif
{
#if !USE(LIBPAS_JIT_HEAP)
using Base = MetaAllocator;
#endif
public:
Allocator(FixedVMPoolExecutableAllocator& allocator)
#if !USE(LIBPAS_JIT_HEAP)
: Base(allocator.getLock(), jitAllocationGranule, pageSize()) // round up all allocations to 32 bytes
,
#else
:
#endif
m_fixedAllocator(allocator)
{
}
#if USE(LIBPAS_JIT_HEAP)
void addFreshFreeSpace(void* start, size_t sizeInBytes)
{
RELEASE_ASSERT(!m_start);
RELEASE_ASSERT(!m_end);
m_start = reinterpret_cast<uintptr_t>(start);
m_end = m_start + sizeInBytes;
jit_heap_add_fresh_memory(pas_range_create(m_start, m_end));
}
bool isInAllocatedMemory(const AbstractLocker&, void* address)
{
uintptr_t addressAsInt = reinterpret_cast<uintptr_t>(address);
return addressAsInt >= m_start && addressAsInt < m_end;
}
#endif // USE(LIBPAS_JIT_HEAP)
#if !USE(LIBPAS_JIT_HEAP)
FreeSpacePtr allocateNewSpace(size_t&) override
{
// We're operating in a fixed pool, so new allocation is always prohibited.
return nullptr;
}
void notifyNeedPage(void* page, size_t count) override
{
m_fixedAllocator.m_reservation.commit(page, pageSize() * count);
}
void notifyPageIsFree(void* page, size_t count) override
{
m_fixedAllocator.m_reservation.decommit(page, pageSize() * count);
}
#endif // !USE(LIBPAS_JIT_HEAP)
FixedVMPoolExecutableAllocator& m_fixedAllocator;
#if USE(LIBPAS_JIT_HEAP)
uintptr_t m_start { 0 };
uintptr_t m_end { 0 };
#endif // USE(LIBPAS_JIT_HEAP)
};
#if ENABLE(JUMP_ISLANDS)
class RegionAllocator final : public Allocator {
using Base = Allocator;
public:
RegionAllocator(FixedVMPoolExecutableAllocator& allocator)
: Base(allocator)
{
}
// ------------------------------------
// | jit allocations --> <-- islands |
// -------------------------------------
uintptr_t start() { return bitwise_cast<uintptr_t>(untagCodePtr<ExecutableMemoryPtrTag>(m_start)); }
uintptr_t end() { return bitwise_cast<uintptr_t>(untagCodePtr<ExecutableMemoryPtrTag>(m_end)); }
uintptr_t islandBegin()
{
// [start, allocatorEnd)
return end() - islandRegionSize;
}
uintptr_t allocatorSize()
{
return islandBegin() - start();
}
size_t islandsPerPage()
{
size_t islandsPerPage = pageSize() / islandSizeInBytes;
ASSERT(islandsPerPage * islandSizeInBytes == pageSize());
ASSERT(isPowerOfTwo(islandsPerPage));
return islandsPerPage;
}
#if !USE(LIBPAS_JIT_HEAP)
void release(const LockHolder& locker, MetaAllocatorHandle& handle) final
{
m_fixedAllocator.handleWillBeReleased(locker, handle);
Base::release(locker, handle);
}
#endif
void* allocateIsland()
{
uintptr_t end = this->end();
auto findResult = [&] () -> void* {
size_t resultBit = islandBits.findClearBit(0);
if (resultBit == islandBits.size())
return nullptr;
islandBits[resultBit] = true;
uintptr_t result = end - ((resultBit + 1) * islandSizeInBytes);
return bitwise_cast<void*>(result);
};
if (void* result = findResult())
return result;
islandBits.resize(islandBits.size() + islandsPerPage());
if (UNLIKELY(islandBits.size() > maxIslandsPerRegion))
crashOnJumpIslandExhaustion();
uintptr_t pageBegin = end - (islandBits.size() * islandSizeInBytes); // [islandBegin, end)
m_fixedAllocator.m_reservation.commit(bitwise_cast<void*>(pageBegin), pageSize());
void* result = findResult();
RELEASE_ASSERT(result);
return result;
}
NEVER_INLINE NO_RETURN_DUE_TO_CRASH void crashOnJumpIslandExhaustion()
{
CRASH();
}
std::optional<size_t> islandBit(uintptr_t island)
{
uintptr_t end = this->end();
if (islandBegin() <= island && island < end)
return ((end - island) / islandSizeInBytes) - 1;
return std::nullopt;
}
void freeIsland(uintptr_t island)
{
RELEASE_ASSERT(islandBegin() <= island && island < end());
size_t bit = islandBit(island).value();
RELEASE_ASSERT(!!islandBits[bit]);
islandBits[bit] = false;
}
bool isInAllocatedMemory(const AbstractLocker& locker, void* address)
{
if (Base::isInAllocatedMemory(locker, address))
return true;
if (std::optional<size_t> bit = islandBit(bitwise_cast<uintptr_t>(address))) {
if (bit.value() < islandBits.size())
return !!islandBits[bit.value()];
}
return false;
}
// Range: [start, end)
void* m_start;
void* m_end;
FastBitVector islandBits;
};
#endif // ENABLE(JUMP_ISLANDS)
template <typename Function>
void forEachAllocator(Function function)
{
#if ENABLE(JUMP_ISLANDS)
for (RegionAllocator& allocator : m_allocators) {
using FunctionResultType = decltype(function(allocator));
if constexpr (std::is_same<IterationStatus, FunctionResultType>::value) {
if (function(allocator) == IterationStatus::Done)
break;
} else {
static_assert(std::is_same<void, FunctionResultType>::value);
function(allocator);
}
}
#else
function(m_allocator);
#endif // ENABLE(JUMP_ISLANDS)
}
#if ENABLE(JUMP_ISLANDS)
class Islands : public RedBlackTree<Islands, void*>::Node {
WTF_MAKE_FAST_ALLOCATED;
public:
void* key() { return jumpSourceLocation.dataLocation(); }
CodeLocationLabel<ExecutableMemoryPtrTag> jumpSourceLocation;
Vector<CodeLocationLabel<ExecutableMemoryPtrTag>> jumpIslands;
};
#endif // ENABLE(JUMP_ISLANDS)
Lock m_lock;
PageReservation m_reservation;
#if ENABLE(JUMP_ISLANDS)
std::array<RegionAllocator, maxNumberOfRegions> m_allocators;
unsigned m_numAllocators;
RedBlackTree<Islands, void*> m_islandsForJumpSourceLocation;
#else
Allocator m_allocator;
#endif // ENABLE(JUMP_ISLANDS)
size_t m_bytesReserved { 0 };
#if USE(LIBPAS_JIT_HEAP)
std::atomic<size_t> m_bytesAllocated { 0 };
#endif
};
// Keep this pointer in a mutable global variable to help Leaks find it.
// But we do not use this pointer.
static FixedVMPoolExecutableAllocator* globalFixedVMPoolExecutableAllocatorToWorkAroundLeaks = nullptr;
void ExecutableAllocator::initializeUnderlyingAllocator()
{
RELEASE_ASSERT(!g_jscConfig.fixedVMPoolExecutableAllocator);
g_jscConfig.fixedVMPoolExecutableAllocator = new FixedVMPoolExecutableAllocator();
globalFixedVMPoolExecutableAllocatorToWorkAroundLeaks = g_jscConfig.fixedVMPoolExecutableAllocator;
}
bool ExecutableAllocator::isValid() const
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
return Base::isValid();
return allocator->isValid();
}
bool ExecutableAllocator::underMemoryPressure()
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
return Base::underMemoryPressure();
return allocator->bytesAllocated() > allocator->bytesReserved() / 2;
}
double ExecutableAllocator::memoryPressureMultiplier(size_t addedMemoryUsage)
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
return Base::memoryPressureMultiplier(addedMemoryUsage);
ASSERT(allocator->bytesAllocated() <= allocator->bytesReserved());
size_t bytesAllocated = allocator->bytesAllocated() + addedMemoryUsage;
size_t bytesAvailable = allocator->bytesAvailable();
if (bytesAllocated >= bytesAvailable)
bytesAllocated = bytesAvailable;
double result = 1.0;
size_t divisor = bytesAvailable - bytesAllocated;
if (divisor)
result = static_cast<double>(bytesAvailable) / divisor;
if (result < 1.0)
result = 1.0;
return result;
}
RefPtr<ExecutableMemoryHandle> ExecutableAllocator::allocate(size_t sizeInBytes, JITCompilationEffort effort)
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
return Base::allocate(sizeInBytes, effort);
#if !USE(LIBPAS_JIT_HEAP)
if (Options::logExecutableAllocation()) {
MetaAllocator::Statistics stats = allocator->currentStatistics();
dataLog("Allocating ", sizeInBytes, " bytes of executable memory with ", stats.bytesAllocated, " bytes allocated, ", stats.bytesReserved, " bytes reserved, and ", stats.bytesCommitted, " committed.\n");
}
#endif
if (effort != JITCompilationCanFail && Options::reportMustSucceedExecutableAllocations()) {
dataLog("Allocating ", sizeInBytes, " bytes of executable memory with JITCompilationMustSucceed.\n");
WTFReportBacktrace();
}
if (effort == JITCompilationCanFail
&& doExecutableAllocationFuzzingIfEnabled() == PretendToFailExecutableAllocation)
return nullptr;
if (effort == JITCompilationCanFail) {
// Don't allow allocations if we are down to reserve.
size_t bytesAllocated = allocator->bytesAllocated() + sizeInBytes;
size_t bytesAvailable = allocator->bytesAvailable();
if (bytesAllocated > bytesAvailable) {
if (Options::logExecutableAllocation())
dataLog("Allocation failed because bytes allocated ", bytesAllocated, " > ", bytesAvailable, " bytes available.\n");
return nullptr;
}
}
RefPtr<ExecutableMemoryHandle> result = allocator->allocate(sizeInBytes);
if (!result) {
if (effort != JITCompilationCanFail) {
dataLog("Ran out of executable memory while allocating ", sizeInBytes, " bytes.\n");
CRASH();
}
return nullptr;
}
void* start = allocator->memoryStart();
void* end = allocator->memoryEnd();
void* resultStart = result->start().untaggedPtr();
void* resultEnd = result->end().untaggedPtr();
RELEASE_ASSERT(start <= resultStart && resultStart < end);
RELEASE_ASSERT(start < resultEnd && resultEnd <= end);
return result;
}
bool ExecutableAllocator::isValidExecutableMemory(const AbstractLocker& locker, void* address)
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
return Base::isValidExecutableMemory(locker, address);
return allocator->isInAllocatedMemory(locker, address);
}
Lock& ExecutableAllocator::getLock() const
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
return Base::getLock();
return allocator->getLock();
}
size_t ExecutableAllocator::committedByteCount()
{
#if USE(LIBPAS_JIT_HEAP)
return Base::committedByteCount();
#else // USE(LIBPAS_JIT_HEAP) -> so start of !USE(LIBPAS_JIT_HEAP)
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
return Base::committedByteCount();
return allocator->bytesCommitted();
#endif // USE(LIBPAS_JIT_HEAP) -> so end of !USE(LIBPAS_JIT_HEAP)
}
#if ENABLE(META_ALLOCATOR_PROFILE)
void ExecutableAllocator::dumpProfile()
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
return;
allocator->dumpProfile();
}
#endif
#if ENABLE(JUMP_ISLANDS)
void* ExecutableAllocator::getJumpIslandTo(void* from, void* newDestination)
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
RELEASE_ASSERT_NOT_REACHED();
return allocator->makeIsland(bitwise_cast<uintptr_t>(from), bitwise_cast<uintptr_t>(newDestination), false);
}
void* ExecutableAllocator::getJumpIslandToConcurrently(void* from, void* newDestination)
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
RELEASE_ASSERT_NOT_REACHED();
return allocator->makeIsland(bitwise_cast<uintptr_t>(from), bitwise_cast<uintptr_t>(newDestination), true);
}
#endif
void* startOfFixedExecutableMemoryPoolImpl()
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
return nullptr;
return allocator->memoryStart();
}
void* endOfFixedExecutableMemoryPoolImpl()
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
if (!allocator)
return nullptr;
return allocator->memoryEnd();
}
bool isJITPC(void* pc)
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
return allocator && allocator->isJITPC(pc);
}
void dumpJITMemory(const void* dst, const void* src, size_t size)
{
RELEASE_ASSERT(Options::dumpJITMemoryPath());
#if OS(DARWIN)
static Lock dumpJITMemoryLock;
static int fd WTF_GUARDED_BY_LOCK(dumpJITMemoryLock) = -1;
static uint8_t* buffer;
static constexpr size_t bufferSize = fixedExecutableMemoryPoolSize;
static size_t offset WTF_GUARDED_BY_LOCK(dumpJITMemoryLock) = 0;
static bool needsToFlush WTF_GUARDED_BY_LOCK(dumpJITMemoryLock) = false;
static LazyNeverDestroyed<Ref<WorkQueue>> flushQueue;
struct DumpJIT {
static void flush() WTF_REQUIRES_LOCK(dumpJITMemoryLock)
{
if (fd == -1) {
String path = Options::dumpJITMemoryPath();
path = path.replace("%pid", String::number(getCurrentProcessID()));
fd = open(FileSystem::fileSystemRepresentation(path).data(), O_CREAT | O_TRUNC | O_APPEND | O_WRONLY | O_EXLOCK | O_NONBLOCK, 0666);
RELEASE_ASSERT(fd != -1);
}
::write(fd, buffer, offset);
offset = 0;
needsToFlush = false;
}
static void enqueueFlush() WTF_REQUIRES_LOCK(dumpJITMemoryLock)
{
if (needsToFlush)
return;
needsToFlush = true;
flushQueue.get()->dispatchAfter(Seconds(Options::dumpJITMemoryFlushInterval()), [] {
Locker locker { dumpJITMemoryLock };
if (!needsToFlush)
return;
flush();
});
}
static void write(const void* src, size_t size) WTF_REQUIRES_LOCK(dumpJITMemoryLock)
{
if (UNLIKELY(offset + size > bufferSize))
flush();
memcpy(buffer + offset, src, size);
offset += size;
enqueueFlush();
}
};
static std::once_flag once;
std::call_once(once, [] {
buffer = bitwise_cast<uint8_t*>(malloc(bufferSize));
flushQueue.construct(WorkQueue::create("jsc.dumpJITMemory.queue", WorkQueue::Type::Serial, WorkQueue::QOS::Background));
std::atexit([] {
Locker locker { dumpJITMemoryLock };
DumpJIT::flush();
close(fd);
fd = -1;
});
});
Locker locker { dumpJITMemoryLock };
uint64_t time = mach_absolute_time();
uint64_t dst64 = bitwise_cast<uintptr_t>(dst);
uint64_t size64 = size;
TraceScope(DumpJITMemoryStart, DumpJITMemoryStop, time, dst64, size64);
DumpJIT::write(&time, sizeof(time));
DumpJIT::write(&dst64, sizeof(dst64));
DumpJIT::write(&size64, sizeof(size64));
DumpJIT::write(src, size);
#else
UNUSED_PARAM(dst);
UNUSED_PARAM(src);
UNUSED_PARAM(size);
RELEASE_ASSERT_NOT_REACHED();
#endif
}
#if USE(LIBPAS_JIT_HEAP)
RefPtr<ExecutableMemoryHandle> ExecutableMemoryHandle::createImpl(size_t sizeInBytes)
{
void* key = jit_heap_try_allocate(sizeInBytes);
if (!key)
return nullptr;
return adoptRef(new ExecutableMemoryHandle(MemoryPtr::makeFromRawPointer(key), jit_heap_get_size(key)));
}
ExecutableMemoryHandle::~ExecutableMemoryHandle()
{
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
allocator->handleWillBeReleased(*this, sizeInBytes());
jit_heap_deallocate(key());
}
void ExecutableMemoryHandle::shrink(size_t newSizeInBytes)
{
size_t oldSizeInBytes = sizeInBytes();
jit_heap_shrink(key(), newSizeInBytes);
m_sizeInBytes = jit_heap_get_size(key());
if (oldSizeInBytes != sizeInBytes()) {
FixedVMPoolExecutableAllocator* allocator = g_jscConfig.fixedVMPoolExecutableAllocator;
allocator->shrinkBytesAllocated(oldSizeInBytes, sizeInBytes());
}
}
#endif
} // namespace JSC
#endif // ENABLE(JIT)
namespace JSC {
// Keep this pointer in a mutable global variable to help Leaks find it.
// But we do not use this pointer.
static ExecutableAllocator* globalExecutableAllocatorToWorkAroundLeaks = nullptr;
void ExecutableAllocator::initialize()
{
g_jscConfig.executableAllocator = new ExecutableAllocator;
globalExecutableAllocatorToWorkAroundLeaks = g_jscConfig.executableAllocator;
}
ExecutableAllocator& ExecutableAllocator::singleton()
{
ASSERT(g_jscConfig.executableAllocator);
return *g_jscConfig.executableAllocator;
}
} // namespace JSC
|