1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286
|
/*
* Copyright (C) 2015-2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "CPU.h"
#include <cmath>
namespace JSC {
const int32_t maxExponentForIntegerMathPow = 1000;
JSC_DECLARE_JIT_OPERATION(operationMathPow, double, (double x, double y));
JSC_DECLARE_JIT_OPERATION(operationToInt32, UCPUStrictInt32, (double));
JSC_DECLARE_JIT_OPERATION(operationToInt32SensibleSlow, UCPUStrictInt32, (double));
constexpr double maxSafeInteger()
{
// 2 ^ 53 - 1
return 9007199254740991.0;
}
constexpr double minSafeInteger()
{
// -(2 ^ 53 - 1)
return -9007199254740991.0;
}
inline bool isInteger(double value)
{
return std::isfinite(value) && std::trunc(value) == value;
}
inline bool isInteger(float value)
{
return std::isfinite(value) && std::trunc(value) == value;
}
inline bool isSafeInteger(double value)
{
return std::trunc(value) == value && std::abs(value) <= maxSafeInteger();
}
// This in the ToInt32 operation is defined in section 9.5 of the ECMA-262 spec.
// Note that this operation is identical to ToUInt32 other than to interpretation
// of the resulting bit-pattern (as such this method is also called to implement
// ToUInt32).
//
// The operation can be described as round towards zero, then select the 32 least
// bits of the resulting value in 2s-complement representation.
enum ToInt32Mode {
Generic,
AfterSensibleConversionAttempt,
};
template<ToInt32Mode Mode>
ALWAYS_INLINE int32_t toInt32Internal(double number)
{
uint64_t bits = WTF::bitwise_cast<uint64_t>(number);
int32_t exp = (static_cast<int32_t>(bits >> 52) & 0x7ff) - 0x3ff;
// If exponent < 0 there will be no bits to the left of the decimal point
// after rounding; if the exponent is > 83 then no bits of precision can be
// left in the low 32-bit range of the result (IEEE-754 doubles have 52 bits
// of fractional precision).
// Note this case handles 0, -0, and all infinite, NaN, & denormal value.
// We need to check exp > 83 because:
// 1. exp may be used as a left shift value below in (exp - 52), and
// 2. Left shift amounts that exceed 31 results in undefined behavior. See:
// http://en.cppreference.com/w/cpp/language/operator_arithmetic#Bitwise_shift_operators
//
// Using an unsigned comparison here also gives us a exp < 0 check for free.
if (static_cast<uint32_t>(exp) > 83u)
return 0;
// Select the appropriate 32-bits from the floating point mantissa. If the
// exponent is 52 then the bits we need to select are already aligned to the
// lowest bits of the 64-bit integer representation of the number, no need
// to shift. If the exponent is greater than 52 we need to shift the value
// left by (exp - 52), if the value is less than 52 we need to shift right
// accordingly.
uint32_t result = (exp > 52)
? static_cast<uint32_t>(bits << (exp - 52))
: static_cast<uint32_t>(bits >> (52 - exp));
// IEEE-754 double precision values are stored omitting an implicit 1 before
// the decimal point; we need to reinsert this now. We may also the shifted
// invalid bits into the result that are not a part of the mantissa (the sign
// and exponent bits from the floatingpoint representation); mask these out.
// Note that missingOne should be held as uint32_t since ((1 << 31) - 1) causes
// int32_t overflow.
if (Mode == ToInt32Mode::AfterSensibleConversionAttempt) {
if (exp == 31) {
// This is an optimization for when toInt32() is called in the slow path
// of a JIT operation. Currently, this optimization is only applicable for
// x86 ports. This optimization offers 5% performance improvement in
// kraken-crypto-pbkdf2.
//
// On x86, the fast path does a sensible double-to-int32 conversion, by
// first attempting to truncate the double value to int32 using the
// cvttsd2si_rr instruction. According to Intel's manual, cvttsd2si performs
// the following truncate operation:
//
// If src = NaN, +-Inf, or |(src)rz| > 0x7fffffff and (src)rz != 0x80000000,
// then the result becomes 0x80000000. Otherwise, the operation succeeds.
//
// Note that the ()rz notation means rounding towards zero.
// We'll call the slow case function only when the above cvttsd2si fails. The
// JIT code checks for fast path failure by checking if result == 0x80000000.
// Hence, the slow path will only see the following possible set of numbers:
//
// NaN, +-Inf, or |(src)rz| > 0x7fffffff.
//
// As a result, the exp of the double is always >= 31. We can take advantage
// of this by specifically checking for (exp == 31) and give the compiler a
// chance to constant fold the operations below.
const constexpr uint32_t missingOne = 1U << 31;
result &= missingOne - 1;
result += missingOne;
}
} else {
if (exp < 32) {
const uint32_t missingOne = 1U << exp;
result &= missingOne - 1;
result += missingOne;
}
}
// If the input value was negative (we could test either 'number' or 'bits',
// but testing 'bits' is likely faster) invert the result appropriately.
return static_cast<int64_t>(bits) < 0 ? -static_cast<int32_t>(result) : static_cast<int32_t>(result);
}
ALWAYS_INLINE int32_t toInt32(double number)
{
#if HAVE(FJCVTZS_INSTRUCTION)
int32_t result = 0;
__asm__ ("fjcvtzs %w0, %d1" : "=r" (result) : "w" (number) : "cc");
return result;
#else
return toInt32Internal<ToInt32Mode::Generic>(number);
#endif
}
// This implements ToUInt32, defined in ECMA-262 9.6.
inline uint32_t toUInt32(double number)
{
// As commented in the spec, the operation of ToInt32 and ToUint32 only differ
// in how the result is interpreted; see NOTEs in sections 9.5 and 9.6.
return toInt32(number);
}
ALWAYS_INLINE constexpr UCPUStrictInt32 toUCPUStrictInt32(int32_t value)
{
// StrictInt32 format requires that higher bits are all zeros even if value is negative.
return static_cast<UCPUStrictInt32>(static_cast<uint32_t>(value));
}
inline std::optional<double> safeReciprocalForDivByConst(double constant)
{
// No "weird" numbers (NaN, Denormal, etc).
if (!constant || !std::isnormal(constant))
return std::nullopt;
int exponent;
if (std::frexp(constant, &exponent) != 0.5)
return std::nullopt;
// Note that frexp() returns the value divided by two
// so we to offset this exponent by one.
exponent -= 1;
// A double exponent is between -1022 and 1023.
// Nothing we can do to invert 1023.
if (exponent == 1023)
return std::nullopt;
double reciprocal = std::ldexp(1, -exponent);
ASSERT(std::isnormal(reciprocal));
ASSERT(1. / constant == reciprocal);
ASSERT(constant == 1. / reciprocal);
ASSERT(1. == constant * reciprocal);
return reciprocal;
}
ALWAYS_INLINE bool canBeStrictInt32(double value)
{
// Note: while this behavior is undefined for NaN and inf, the subsequent statement will catch these cases.
const int32_t asInt32 = static_cast<int32_t>(value);
return !(asInt32 != value || (!asInt32 && std::signbit(value))); // true for -0.0
}
ALWAYS_INLINE bool canBeInt32(double value)
{
// Note: Strictly speaking this is an undefined behavior.
return static_cast<int32_t>(value) == value;
}
extern "C" {
JSC_DECLARE_JIT_OPERATION(jsRound, double, (double));
}
namespace Math {
// This macro defines a set of information about all known arith unary generic node.
#define FOR_EACH_ARITH_UNARY_OP_CUSTOM(macro) \
macro(Log1p, log1p) \
#define FOR_EACH_ARITH_UNARY_OP_STD(macro) \
macro(Sin, sin) \
macro(Sinh, sinh) \
macro(Cos, cos) \
macro(Cosh, cosh) \
macro(Tan, tan) \
macro(Tanh, tanh) \
macro(ASin, asin) \
macro(ASinh, asinh) \
macro(ACos, acos) \
macro(ACosh, acosh) \
macro(ATan, atan) \
macro(ATanh, atanh) \
macro(Log, log) \
macro(Log10, log10) \
macro(Log2, log2) \
macro(Cbrt, cbrt) \
macro(Exp, exp) \
macro(Expm1, expm1) \
#define FOR_EACH_ARITH_UNARY_OP(macro) \
FOR_EACH_ARITH_UNARY_OP_STD(macro) \
FOR_EACH_ARITH_UNARY_OP_CUSTOM(macro) \
#define JSC_DEFINE_VIA_STD(capitalizedName, lowerName) \
using std::lowerName; \
JSC_DECLARE_JIT_OPERATION(lowerName##Double, double, (double)); \
JSC_DECLARE_JIT_OPERATION(lowerName##Float, float, (float));
FOR_EACH_ARITH_UNARY_OP_STD(JSC_DEFINE_VIA_STD)
#undef JSC_DEFINE_VIA_STD
#define JSC_DEFINE_VIA_CUSTOM(capitalizedName, lowerName) \
JS_EXPORT_PRIVATE double lowerName(double); \
JSC_DECLARE_JIT_OPERATION(lowerName##Double, double, (double)); \
JSC_DECLARE_JIT_OPERATION(lowerName##Float, float, (float));
FOR_EACH_ARITH_UNARY_OP_CUSTOM(JSC_DEFINE_VIA_CUSTOM)
#undef JSC_DEFINE_VIA_CUSTOM
JSC_DECLARE_JIT_OPERATION(truncDouble, double, (double));
JSC_DECLARE_JIT_OPERATION(truncFloat, float, (float));
JSC_DECLARE_JIT_OPERATION(ceilDouble, double, (double));
JSC_DECLARE_JIT_OPERATION(ceilFloat, float, (float));
JSC_DECLARE_JIT_OPERATION(floorDouble, double, (double));
JSC_DECLARE_JIT_OPERATION(floorFloat, float, (float));
JSC_DECLARE_JIT_OPERATION(sqrtDouble, double, (double));
JSC_DECLARE_JIT_OPERATION(sqrtFloat, float, (float));
JSC_DECLARE_JIT_OPERATION(stdPowDouble, double, (double, double));
JSC_DECLARE_JIT_OPERATION(stdPowFloat, float, (float, float));
JSC_DECLARE_JIT_OPERATION(fmodDouble, double, (double, double));
JSC_DECLARE_JIT_OPERATION(roundDouble, double, (double));
JSC_DECLARE_JIT_OPERATION(jsRoundDouble, double, (double));
} // namespace Math
} // namespace JSC
|