1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015
|
/*
* Copyright (C) 2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CSSCalcOperationNode.h"
#include "CSSCalcCategoryMapping.h"
#include "CSSCalcInvertNode.h"
#include "CSSCalcNegateNode.h"
#include "CSSCalcPrimitiveValueNode.h"
#include "CSSCalcValue.h"
#include "CSSPrimitiveValue.h"
#include "CSSUnits.h"
#include "CalcExpressionOperation.h"
#include "Logging.h"
#include <wtf/text/TextStream.h>
namespace WebCore {
// This is the result of the "To add two types type1 and type2, perform the following steps:" rules.
static const CalculationCategory addSubtractResult[static_cast<unsigned>(CalculationCategory::Angle)][static_cast<unsigned>(CalculationCategory::Angle)] = {
// CalculationCategory::Number CalculationCategory::Length CalculationCategory::Percent CalculationCategory::PercentNumber CalculationCategory::PercentLength
{ CalculationCategory::Number, CalculationCategory::Other, CalculationCategory::PercentNumber, CalculationCategory::PercentNumber, CalculationCategory::Other }, // CalculationCategory::Number
{ CalculationCategory::Other, CalculationCategory::Length, CalculationCategory::PercentLength, CalculationCategory::Other, CalculationCategory::PercentLength }, // CalculationCategory::Length
{ CalculationCategory::PercentNumber, CalculationCategory::PercentLength, CalculationCategory::Percent, CalculationCategory::PercentNumber, CalculationCategory::PercentLength }, // CalculationCategory::Percent
{ CalculationCategory::PercentNumber, CalculationCategory::Other, CalculationCategory::PercentNumber, CalculationCategory::PercentNumber, CalculationCategory::Other }, // CalculationCategory::PercentNumber
{ CalculationCategory::Other, CalculationCategory::PercentLength, CalculationCategory::PercentLength, CalculationCategory::Other, CalculationCategory::PercentLength }, // CalculationCategory::PercentLength
};
static CalculationCategory determineCategory(const CSSCalcExpressionNode& leftSide, const CSSCalcExpressionNode& rightSide, CalcOperator op)
{
CalculationCategory leftCategory = leftSide.category();
CalculationCategory rightCategory = rightSide.category();
ASSERT(leftCategory < CalculationCategory::Other);
ASSERT(rightCategory < CalculationCategory::Other);
switch (op) {
case CalcOperator::Add:
case CalcOperator::Subtract:
if (leftCategory < CalculationCategory::Angle && rightCategory < CalculationCategory::Angle)
return addSubtractResult[static_cast<unsigned>(leftCategory)][static_cast<unsigned>(rightCategory)];
if (leftCategory == rightCategory)
return leftCategory;
return CalculationCategory::Other;
case CalcOperator::Multiply:
if (leftCategory != CalculationCategory::Number && rightCategory != CalculationCategory::Number)
return CalculationCategory::Other;
return leftCategory == CalculationCategory::Number ? rightCategory : leftCategory;
case CalcOperator::Divide:
if (rightCategory != CalculationCategory::Number || rightSide.isZero())
return CalculationCategory::Other;
return leftCategory;
case CalcOperator::Min:
case CalcOperator::Max:
case CalcOperator::Clamp:
ASSERT_NOT_REACHED();
return CalculationCategory::Other;
}
ASSERT_NOT_REACHED();
return CalculationCategory::Other;
}
// FIXME: Need to implement correct category computation per:
// <https://drafts.css-houdini.org/css-typed-om-1/#cssnumericvalue-invert-a-type>
// To invert a type type, perform the following steps:
// Let result be a new type with an initially empty ordered map and an initially null percent hint
// For each unit → exponent of type, set result[unit] to (-1 * exponent).
static CalculationCategory categoryForInvert(CalculationCategory category)
{
return category;
}
static CalculationCategory determineCategory(const Vector<Ref<CSSCalcExpressionNode>>& nodes, CalcOperator op)
{
if (nodes.isEmpty())
return CalculationCategory::Other;
auto currentCategory = nodes[0]->category();
for (unsigned i = 1; i < nodes.size(); ++i) {
const auto& node = nodes[i].get();
auto usedOperator = op;
if (node.type() == CSSCalcExpressionNode::Type::CssCalcInvert)
usedOperator = CalcOperator::Divide;
auto nextCategory = node.category();
switch (usedOperator) {
case CalcOperator::Add:
case CalcOperator::Subtract:
// <https://drafts.css-houdini.org/css-typed-om-1/#cssnumericvalue-add-two-types>
// At a + or - sub-expression, attempt to add the types of the left and right arguments.
// If this returns failure, the entire calculation’s type is failure. Otherwise, the sub-expression’s type is the returned type.
if (currentCategory < CalculationCategory::Angle && nextCategory < CalculationCategory::Angle)
currentCategory = addSubtractResult[static_cast<unsigned>(currentCategory)][static_cast<unsigned>(nextCategory)];
else if (currentCategory != nextCategory)
return CalculationCategory::Other;
break;
case CalcOperator::Multiply:
// <https://drafts.css-houdini.org/css-typed-om-1/#cssnumericvalue-multiply-two-types>
// At a * sub-expression, multiply the types of the left and right arguments. The sub-expression’s type is the returned result.
if (currentCategory != CalculationCategory::Number && nextCategory != CalculationCategory::Number)
return CalculationCategory::Other;
currentCategory = currentCategory == CalculationCategory::Number ? nextCategory : currentCategory;
break;
case CalcOperator::Divide: {
auto invertCategory = categoryForInvert(nextCategory);
// At a / sub-expression, let left type be the result of finding the types of its left argument,
// and right type be the result of finding the types of its right argument and then inverting it.
// The sub-expression’s type is the result of multiplying the left type and right type.
if (invertCategory != CalculationCategory::Number || node.isZero())
return CalculationCategory::Other;
break;
}
case CalcOperator::Min:
case CalcOperator::Max:
case CalcOperator::Clamp:
// The type of a min(), max(), or clamp() expression is the result of adding the types of its comma-separated calculations
return CalculationCategory::Other;
}
}
return currentCategory;
}
static CalculationCategory resolvedTypeForMinOrMaxOrClamp(CalculationCategory category, CalculationCategory destinationCategory)
{
switch (category) {
case CalculationCategory::Number:
case CalculationCategory::Length:
case CalculationCategory::PercentNumber:
case CalculationCategory::PercentLength:
case CalculationCategory::Angle:
case CalculationCategory::Time:
case CalculationCategory::Frequency:
case CalculationCategory::Other:
return category;
case CalculationCategory::Percent:
if (destinationCategory == CalculationCategory::Length)
return CalculationCategory::PercentLength;
if (destinationCategory == CalculationCategory::Number)
return CalculationCategory::PercentNumber;
return category;
}
return CalculationCategory::Other;
}
static bool isSamePair(CalculationCategory a, CalculationCategory b, CalculationCategory x, CalculationCategory y)
{
return (a == x && b == y) || (a == y && b == x);
}
enum class SortingCategory {
Number,
Percent,
Dimension,
Other
};
static SortingCategory sortingCategoryForType(CSSUnitType unitType)
{
static constexpr SortingCategory sortOrder[] = {
SortingCategory::Number, // CalculationCategory::Number,
SortingCategory::Dimension, // CalculationCategory::Length,
SortingCategory::Percent, // CalculationCategory::Percent,
SortingCategory::Number, // CalculationCategory::PercentNumber,
SortingCategory::Dimension, // CalculationCategory::PercentLength,
SortingCategory::Dimension, // CalculationCategory::Angle,
SortingCategory::Dimension, // CalculationCategory::Time,
SortingCategory::Dimension, // CalculationCategory::Frequency,
SortingCategory::Other, // UOther
};
COMPILE_ASSERT(ARRAY_SIZE(sortOrder) == static_cast<unsigned>(CalculationCategory::Other) + 1, sortOrder_size_should_match_UnitCategory);
return sortOrder[static_cast<unsigned>(calcUnitCategory(unitType))];
}
static SortingCategory sortingCategory(const CSSCalcExpressionNode& node)
{
if (is<CSSCalcPrimitiveValueNode>(node))
return sortingCategoryForType(node.primitiveType());
return SortingCategory::Other;
}
static CSSUnitType primitiveTypeForCombination(const CSSCalcExpressionNode& node)
{
if (is<CSSCalcPrimitiveValueNode>(node))
return node.primitiveType();
return CSSUnitType::CSS_UNKNOWN;
}
static CSSCalcPrimitiveValueNode::UnitConversion conversionToAddValuesWithTypes(CSSUnitType firstType, CSSUnitType secondType)
{
if (firstType == CSSUnitType::CSS_UNKNOWN || secondType == CSSUnitType::CSS_UNKNOWN)
return CSSCalcPrimitiveValueNode::UnitConversion::Invalid;
auto firstCategory = calculationCategoryForCombination(firstType);
// Compatible types.
if (firstCategory != CalculationCategory::Other && firstCategory == calculationCategoryForCombination(secondType))
return CSSCalcPrimitiveValueNode::UnitConversion::Canonicalize;
// Matching types.
if (firstType == secondType && hasDoubleValue(firstType))
return CSSCalcPrimitiveValueNode::UnitConversion::Preserve;
return CSSCalcPrimitiveValueNode::UnitConversion::Invalid;
}
static CSSValueID functionFromOperator(CalcOperator op)
{
switch (op) {
case CalcOperator::Add:
case CalcOperator::Subtract:
case CalcOperator::Multiply:
case CalcOperator::Divide:
return CSSValueCalc;
case CalcOperator::Min:
return CSSValueMin;
case CalcOperator::Max:
return CSSValueMax;
case CalcOperator::Clamp:
return CSSValueClamp;
}
return CSSValueCalc;
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::create(CalcOperator op, RefPtr<CSSCalcExpressionNode>&& leftSide, RefPtr<CSSCalcExpressionNode>&& rightSide)
{
if (!leftSide || !rightSide)
return nullptr;
ASSERT(op == CalcOperator::Add || op == CalcOperator::Multiply);
ASSERT(leftSide->category() < CalculationCategory::Other);
ASSERT(rightSide->category() < CalculationCategory::Other);
auto newCategory = determineCategory(*leftSide, *rightSide, op);
if (newCategory == CalculationCategory::Other) {
LOG_WITH_STREAM(Calc, stream << "Failed to create CSSCalcOperationNode " << op << " node because unable to determine category from " << prettyPrintNode(*leftSide) << " and " << *rightSide);
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(newCategory, op, leftSide.releaseNonNull(), rightSide.releaseNonNull()));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createSum(Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.isEmpty())
return nullptr;
auto newCategory = determineCategory(values, CalcOperator::Add);
if (newCategory == CalculationCategory::Other) {
LOG_WITH_STREAM(Calc, stream << "Failed to create sum node because unable to determine category from " << prettyPrintNodes(values));
newCategory = determineCategory(values, CalcOperator::Add);
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(newCategory, CalcOperator::Add, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createProduct(Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.isEmpty())
return nullptr;
auto newCategory = determineCategory(values, CalcOperator::Multiply);
if (newCategory == CalculationCategory::Other) {
LOG_WITH_STREAM(Calc, stream << "Failed to create product node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(newCategory, CalcOperator::Multiply, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createMinOrMaxOrClamp(CalcOperator op, Vector<Ref<CSSCalcExpressionNode>>&& values, CalculationCategory destinationCategory)
{
ASSERT(op == CalcOperator::Min || op == CalcOperator::Max || op == CalcOperator::Clamp);
ASSERT_IMPLIES(op == CalcOperator::Clamp, values.size() == 3);
std::optional<CalculationCategory> category = std::nullopt;
for (auto& value : values) {
auto valueCategory = resolvedTypeForMinOrMaxOrClamp(value->category(), destinationCategory);
ASSERT(valueCategory < CalculationCategory::Other);
if (!category) {
if (valueCategory == CalculationCategory::Other) {
LOG_WITH_STREAM(Calc, stream << "Failed to create CSSCalcOperationNode " << op << " node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
category = valueCategory;
}
if (category != valueCategory) {
if (isSamePair(category.value(), valueCategory, CalculationCategory::Length, CalculationCategory::PercentLength)) {
category = CalculationCategory::PercentLength;
continue;
}
if (isSamePair(category.value(), valueCategory, CalculationCategory::Number, CalculationCategory::PercentNumber)) {
category = CalculationCategory::PercentNumber;
continue;
}
return nullptr;
}
}
return adoptRef(new CSSCalcOperationNode(category.value(), op, WTFMove(values)));
}
void CSSCalcOperationNode::hoistChildrenWithOperator(CalcOperator op)
{
ASSERT(op == CalcOperator::Add || op == CalcOperator::Multiply);
auto hasChildWithOperator = [&] (CalcOperator op) {
for (auto& child : m_children) {
if (is<CSSCalcOperationNode>(child.get()) && downcast<CSSCalcOperationNode>(child.get()).calcOperator() == op)
return true;
}
return false;
};
if (!hasChildWithOperator(op))
return;
Vector<Ref<CSSCalcExpressionNode>> newChildren;
for (auto& child : m_children) {
if (is<CSSCalcOperationNode>(child.get()) && downcast<CSSCalcOperationNode>(child.get()).calcOperator() == op) {
auto& children = downcast<CSSCalcOperationNode>(child.get()).children();
for (auto& childToMove : children)
newChildren.append(WTFMove(childToMove));
} else
newChildren.append(WTFMove(child));
}
newChildren.shrinkToFit();
m_children = WTFMove(newChildren);
}
bool CSSCalcOperationNode::canCombineAllChildren() const
{
if (m_children.size() < 2)
return false;
if (!is<CSSCalcPrimitiveValueNode>(m_children[0]))
return false;
auto firstUnitType = m_children[0]->primitiveType();
auto firstCategory = calculationCategoryForCombination(m_children[0]->primitiveType());
for (unsigned i = 1; i < m_children.size(); ++i) {
auto& node = m_children[i];
if (!is<CSSCalcPrimitiveValueNode>(node))
return false;
auto nodeUnitType = node->primitiveType();
auto nodeCategory = calculationCategoryForCombination(nodeUnitType);
if (nodeCategory != firstCategory)
return false;
if (nodeCategory == CalculationCategory::Other && nodeUnitType != firstUnitType)
return false;
if (!hasDoubleValue(nodeUnitType))
return false;
}
return true;
}
void CSSCalcOperationNode::combineChildren()
{
if (m_children.size() < 2)
return;
if (shouldSortChildren()) {
// <https://drafts.csswg.org/css-values-4/#sort-a-calculations-children>
std::stable_sort(m_children.begin(), m_children.end(), [](const auto& first, const auto& second) {
// Sort order: number, percentage, dimension, other.
SortingCategory firstCategory = sortingCategory(first.get());
SortingCategory secondCategory = sortingCategory(second.get());
if (firstCategory == SortingCategory::Dimension && secondCategory == SortingCategory::Dimension) {
// If nodes contains any dimensions, remove them from nodes, sort them by their units, and append them to ret.
auto firstUnitString = CSSPrimitiveValue::unitTypeString(first->primitiveType());
auto secondUnitString = CSSPrimitiveValue::unitTypeString(second->primitiveType());
return codePointCompareLessThan(firstUnitString, secondUnitString);
}
return static_cast<unsigned>(firstCategory) < static_cast<unsigned>(secondCategory);
});
LOG_WITH_STREAM(Calc, stream << "post-sort: " << *this);
}
if (calcOperator() == CalcOperator::Add) {
// For each set of root’s children that are numeric values with identical units,
// remove those children and replace them with a single numeric value containing
// the sum of the removed nodes, and with the same unit.
Vector<Ref<CSSCalcExpressionNode>> newChildren;
newChildren.reserveInitialCapacity(m_children.size());
newChildren.uncheckedAppend(m_children[0].copyRef());
CSSUnitType previousType = primitiveTypeForCombination(newChildren[0].get());
for (unsigned i = 1; i < m_children.size(); ++i) {
auto& currentNode = m_children[i];
CSSUnitType currentType = primitiveTypeForCombination(currentNode.get());
auto conversionType = conversionToAddValuesWithTypes(previousType, currentType);
if (conversionType != CSSCalcPrimitiveValueNode::UnitConversion::Invalid) {
downcast<CSSCalcPrimitiveValueNode>(newChildren.last().get()).add(downcast<CSSCalcPrimitiveValueNode>(currentNode.get()), conversionType);
continue;
}
previousType = primitiveTypeForCombination(currentNode);
newChildren.uncheckedAppend(currentNode.copyRef());
}
newChildren.shrinkToFit();
m_children = WTFMove(newChildren);
return;
}
if (calcOperator() == CalcOperator::Multiply) {
// If root has multiple children that are numbers (not percentages or dimensions),
// remove them and replace them with a single number containing the product of the removed nodes.
double multiplier = 1;
// Sorting will have put the number nodes first.
unsigned leadingNumberNodeCount = 0;
for (auto& node : m_children) {
auto nodeType = primitiveTypeForCombination(node.get());
if (nodeType != CSSUnitType::CSS_NUMBER)
break;
multiplier *= node->doubleValue(CSSUnitType::CSS_NUMBER);
++leadingNumberNodeCount;
}
Vector<Ref<CSSCalcExpressionNode>> newChildren;
newChildren.reserveInitialCapacity(m_children.size());
// If root contains only two children, one of which is a number (not a percentage or dimension) and the other of
// which is a Sum whose children are all numeric values, multiply all of the Sum’s children by the number, then
// return the Sum.
// The Sum's children simplification will have happened already.
bool didMultiply = false;
if (leadingNumberNodeCount && m_children.size() - leadingNumberNodeCount == 1) {
auto multiplicandCategory = calcUnitCategory(primitiveTypeForCombination(m_children.last().get()));
if (multiplicandCategory != CalculationCategory::Other) {
newChildren.uncheckedAppend(m_children.last().copyRef());
downcast<CSSCalcPrimitiveValueNode>(newChildren[0].get()).multiply(multiplier);
didMultiply = true;
} else if (is<CSSCalcOperationNode>(m_children.last().get()) && downcast<CSSCalcOperationNode>(m_children.last().get()).calcOperator() == CalcOperator::Add) {
// If we're multiplying with another operation that is an addition and all the added children
// are percentages or dimensions, we should multiply each child and make this expression an
// addition.
auto allChildrenArePrimitiveValues = [](const Vector<Ref<CSSCalcExpressionNode>>& children) -> bool
{
for (auto& child : children) {
if (!is<CSSCalcPrimitiveValueNode>(child.get()))
return false;
}
return true;
};
auto& children = downcast<CSSCalcOperationNode>(m_children.last().get()).children();
if (allChildrenArePrimitiveValues(children)) {
for (auto& child : children) {
newChildren.append(child.copyRef());
downcast<CSSCalcPrimitiveValueNode>(newChildren.last().get()).multiply(multiplier);
}
m_operator = CalcOperator::Add;
didMultiply = true;
}
}
}
if (!didMultiply) {
if (leadingNumberNodeCount) {
auto multiplierNode = CSSCalcPrimitiveValueNode::create(CSSPrimitiveValue::create(multiplier, CSSUnitType::CSS_NUMBER));
newChildren.uncheckedAppend(WTFMove(multiplierNode));
}
for (unsigned i = leadingNumberNodeCount; i < m_children.size(); ++i)
newChildren.uncheckedAppend(m_children[i].copyRef());
}
newChildren.shrinkToFit();
m_children = WTFMove(newChildren);
}
if (isMinOrMaxNode() && canCombineAllChildren()) {
auto combinedUnitType = m_children[0]->primitiveType();
auto category = calculationCategoryForCombination(combinedUnitType);
if (category != CalculationCategory::Other)
combinedUnitType = canonicalUnitTypeForCalculationCategory(category);
double resolvedValue = doubleValue(combinedUnitType);
auto newChild = CSSCalcPrimitiveValueNode::create(CSSPrimitiveValue::create(resolvedValue, combinedUnitType));
m_children.clear();
m_children.append(WTFMove(newChild));
}
}
// https://drafts.csswg.org/css-values-4/#simplify-a-calculation-tree
Ref<CSSCalcExpressionNode> CSSCalcOperationNode::simplify(Ref<CSSCalcExpressionNode>&& rootNode)
{
return simplifyRecursive(WTFMove(rootNode), 0);
}
Ref<CSSCalcExpressionNode> CSSCalcOperationNode::simplifyRecursive(Ref<CSSCalcExpressionNode>&& rootNode, int depth)
{
if (is<CSSCalcOperationNode>(rootNode)) {
auto& operationNode = downcast<CSSCalcOperationNode>(rootNode.get());
auto& children = operationNode.children();
for (unsigned i = 0; i < children.size(); ++i) {
auto child = children[i].copyRef();
auto newNode = simplifyRecursive(WTFMove(child), depth + 1);
if (newNode.ptr() != children[i].ptr())
children[i] = WTFMove(newNode);
}
} else if (is<CSSCalcNegateNode>(rootNode)) {
auto& negateNode = downcast<CSSCalcNegateNode>(rootNode.get());
Ref<CSSCalcExpressionNode> child = negateNode.child();
auto newNode = simplifyRecursive(WTFMove(child), depth + 1);
if (newNode.ptr() != &negateNode.child())
negateNode.setChild(WTFMove(newNode));
} else if (is<CSSCalcInvertNode>(rootNode)) {
auto& invertNode = downcast<CSSCalcInvertNode>(rootNode.get());
Ref<CSSCalcExpressionNode> child = invertNode.child();
auto newNode = simplifyRecursive(WTFMove(child), depth + 1);
if (newNode.ptr() != &invertNode.child())
invertNode.setChild(WTFMove(newNode));
}
return simplifyNode(WTFMove(rootNode), depth);
}
Ref<CSSCalcExpressionNode> CSSCalcOperationNode::simplifyNode(Ref<CSSCalcExpressionNode>&& rootNode, int depth)
{
if (is<CSSCalcPrimitiveValueNode>(rootNode)) {
// If root is a percentage that will be resolved against another value, and there is enough information
// available to resolve it, do so, and express the resulting numeric value in the appropriate canonical
// unit. Return the value.
// If root is a dimension that is not expressed in its canonical unit, and there is enough information
// available to convert it to the canonical unit, do so, and return the value.
auto& primitiveValueNode = downcast<CSSCalcPrimitiveValueNode>(rootNode.get());
primitiveValueNode.canonicalizeUnit();
return WTFMove(rootNode);
}
// If root is an operator node that’s not one of the calc-operator nodes, and all of its children are numeric values
// with enough information to computed the operation root represents, return the result of running root’s operation
// using its children, expressed in the result’s canonical unit.
if (is<CSSCalcOperationNode>(rootNode)) {
auto& calcOperationNode = downcast<CSSCalcOperationNode>(rootNode.get());
// Don't simplify at the root, otherwise we lose track of the operation for serialization.
if (calcOperationNode.children().size() == 1 && depth)
return WTFMove(calcOperationNode.children()[0]);
if (calcOperationNode.isCalcSumNode()) {
calcOperationNode.hoistChildrenWithOperator(CalcOperator::Add);
calcOperationNode.combineChildren();
}
if (calcOperationNode.isCalcProductNode()) {
calcOperationNode.hoistChildrenWithOperator(CalcOperator::Multiply);
calcOperationNode.combineChildren();
}
if (calcOperationNode.isMinOrMaxNode())
calcOperationNode.combineChildren();
// If only one child remains, return the child (except at the root).
auto shouldCombineParentWithOnlyChild = [](const CSSCalcOperationNode& parent, int depth)
{
if (parent.children().size() != 1)
return false;
// Always simplify below the root.
if (depth)
return true;
// At the root, preserve the root function by only merging nodes with the same function.
auto& child = parent.children().first();
if (!is<CSSCalcOperationNode>(child))
return false;
auto parentFunction = functionFromOperator(parent.calcOperator());
auto childFunction = functionFromOperator(downcast<CSSCalcOperationNode>(child.get()).calcOperator());
return childFunction == parentFunction;
};
if (shouldCombineParentWithOnlyChild(calcOperationNode, depth))
return WTFMove(calcOperationNode.children().first());
return WTFMove(rootNode);
}
if (is<CSSCalcNegateNode>(rootNode)) {
auto& childNode = downcast<CSSCalcNegateNode>(rootNode.get()).child();
// If root’s child is a numeric value, return an equivalent numeric value, but with the value negated (0 - value).
if (is<CSSCalcPrimitiveValueNode>(childNode) && downcast<CSSCalcPrimitiveValueNode>(childNode).isNumericValue()) {
downcast<CSSCalcPrimitiveValueNode>(childNode).negate();
return childNode;
}
// If root’s child is a Negate node, return the child’s child.
if (is<CSSCalcNegateNode>(childNode))
return downcast<CSSCalcNegateNode>(childNode).child();
return WTFMove(rootNode);
}
if (is<CSSCalcInvertNode>(rootNode)) {
auto& childNode = downcast<CSSCalcInvertNode>(rootNode.get()).child();
// If root’s child is a number (not a percentage or dimension) return the reciprocal of the child’s value.
if (is<CSSCalcPrimitiveValueNode>(childNode) && downcast<CSSCalcPrimitiveValueNode>(childNode).isNumericValue()) {
downcast<CSSCalcPrimitiveValueNode>(childNode).invert();
return childNode;
}
// If root’s child is an Invert node, return the child’s child.
if (is<CSSCalcInvertNode>(childNode))
return downcast<CSSCalcInvertNode>(childNode).child();
return WTFMove(rootNode);
}
return WTFMove(rootNode);
}
CSSUnitType CSSCalcOperationNode::primitiveType() const
{
auto unitCategory = category();
switch (unitCategory) {
case CalculationCategory::Number:
#if ASSERT_ENABLED
for (auto& child : m_children)
ASSERT(child->category() == CalculationCategory::Number);
#endif
return CSSUnitType::CSS_NUMBER;
case CalculationCategory::Percent: {
if (m_children.isEmpty())
return CSSUnitType::CSS_UNKNOWN;
if (m_children.size() == 2) {
if (m_children[0]->category() == CalculationCategory::Number)
return m_children[1]->primitiveType();
if (m_children[1]->category() == CalculationCategory::Number)
return m_children[0]->primitiveType();
}
CSSUnitType firstType = m_children[0]->primitiveType();
for (auto& child : m_children) {
if (firstType != child->primitiveType())
return CSSUnitType::CSS_UNKNOWN;
}
return firstType;
}
case CalculationCategory::Length:
case CalculationCategory::Angle:
case CalculationCategory::Time:
case CalculationCategory::Frequency:
if (m_children.size() == 1)
return m_children.first()->primitiveType();
return canonicalUnitTypeForCalculationCategory(unitCategory);
case CalculationCategory::PercentLength:
case CalculationCategory::PercentNumber:
case CalculationCategory::Other:
return CSSUnitType::CSS_UNKNOWN;
}
ASSERT_NOT_REACHED();
return CSSUnitType::CSS_UNKNOWN;
}
std::unique_ptr<CalcExpressionNode> CSSCalcOperationNode::createCalcExpression(const CSSToLengthConversionData& conversionData) const
{
Vector<std::unique_ptr<CalcExpressionNode>> nodes;
nodes.reserveInitialCapacity(m_children.size());
for (auto& child : m_children) {
auto node = child->createCalcExpression(conversionData);
if (!node)
return nullptr;
nodes.uncheckedAppend(WTFMove(node));
}
// Reverse the operation we did when creating this node, recovering a suitable destination category for otherwise-ambiguous min/max/clamp nodes.
// Note that this category is really only good enough for that purpose and is not accurate for other node types; we could use a boolean instead.
auto destinationCategory = CalculationCategory::Other;
if (category() == CalculationCategory::PercentLength)
destinationCategory = CalculationCategory::Length;
else if (category() == CalculationCategory::PercentNumber)
destinationCategory = CalculationCategory::Number;
return makeUnique<CalcExpressionOperation>(WTFMove(nodes), m_operator, destinationCategory);
}
double CSSCalcOperationNode::doubleValue(CSSUnitType unitType) const
{
bool allowNumbers = calcOperator() == CalcOperator::Multiply;
return evaluate(m_children.map([&] (auto& child) {
CSSUnitType childType = unitType;
if (allowNumbers && unitType != CSSUnitType::CSS_NUMBER && child->primitiveType() == CSSUnitType::CSS_NUMBER)
childType = CSSUnitType::CSS_NUMBER;
return child->doubleValue(childType);
}));
}
double CSSCalcOperationNode::computeLengthPx(const CSSToLengthConversionData& conversionData) const
{
return evaluate(m_children.map([&] (auto& child) {
return child->computeLengthPx(conversionData);
}));
}
void CSSCalcOperationNode::collectDirectComputationalDependencies(HashSet<CSSPropertyID>& values) const
{
for (auto& child : m_children)
child->collectDirectComputationalDependencies(values);
}
void CSSCalcOperationNode::collectDirectRootComputationalDependencies(HashSet<CSSPropertyID>& values) const
{
for (auto& child : m_children)
child->collectDirectRootComputationalDependencies(values);
}
void CSSCalcOperationNode::buildCSSText(const CSSCalcExpressionNode& node, StringBuilder& builder)
{
auto shouldOutputEnclosingCalc = [](const CSSCalcExpressionNode& rootNode) {
if (is<CSSCalcOperationNode>(rootNode)) {
auto& operationNode = downcast<CSSCalcOperationNode>(rootNode);
return operationNode.isCalcSumNode() || operationNode.isCalcProductNode();
}
return !is<CSSCalcPrimitiveValueNode>(rootNode);
};
bool outputCalc = shouldOutputEnclosingCalc(node);
if (outputCalc)
builder.append("calc(");
buildCSSTextRecursive(node, builder, GroupingParens::Omit);
if (outputCalc)
builder.append(')');
}
static const char* functionPrefixForOperator(CalcOperator op)
{
switch (op) {
case CalcOperator::Add:
case CalcOperator::Subtract:
case CalcOperator::Multiply:
case CalcOperator::Divide:
ASSERT_NOT_REACHED();
return "";
case CalcOperator::Min: return "min(";
case CalcOperator::Max: return "max(";
case CalcOperator::Clamp: return "clamp(";
}
return "";
}
// <https://drafts.csswg.org/css-values-4/#serialize-a-calculation-tree>
void CSSCalcOperationNode::buildCSSTextRecursive(const CSSCalcExpressionNode& node, StringBuilder& builder, GroupingParens parens)
{
// If root is a numeric value, or a non-math function, serialize root per the normal rules for it and return the result.
if (is<CSSCalcPrimitiveValueNode>(node)) {
auto& valueNode = downcast<CSSCalcPrimitiveValueNode>(node);
builder.append(valueNode.customCSSText());
return;
}
if (is<CSSCalcOperationNode>(node)) {
auto& operationNode = downcast<CSSCalcOperationNode>(node);
if (operationNode.isCalcSumNode()) {
// If root is a Sum node, let s be a string initially containing "(".
if (parens == GroupingParens::Include)
builder.append('(');
// Simplification already sorted children.
auto& children = operationNode.children();
ASSERT(children.size());
// Serialize root’s first child, and append it to s.
buildCSSTextRecursive(children.first(), builder);
// For each child of root beyond the first:
// If child is a Negate node, append " - " to s, then serialize the Negate’s child and append the result to s.
// If child is a negative numeric value, append " - " to s, then serialize the negation of child as normal and append the result to s.
// Otherwise, append " + " to s, then serialize child and append the result to s.
for (unsigned i = 1; i < children.size(); ++i) {
auto& child = children[i];
if (is<CSSCalcNegateNode>(child)) {
builder.append(" - ");
buildCSSTextRecursive(downcast<CSSCalcNegateNode>(child.get()).child(), builder);
continue;
}
if (is<CSSCalcPrimitiveValueNode>(child)) {
auto& primitiveValueNode = downcast<CSSCalcPrimitiveValueNode>(child.get());
if (primitiveValueNode.isNegative()) {
builder.append(" - ");
// Serialize the negation of child.
auto unitType = primitiveValueNode.value().primitiveType();
builder.append(0 - primitiveValueNode.value().doubleValue(), CSSPrimitiveValue::unitTypeString(unitType));
continue;
}
}
builder.append(" + ");
buildCSSTextRecursive(child, builder);
}
if (parens == GroupingParens::Include)
builder.append(')');
return;
}
if (operationNode.isCalcProductNode()) {
// If root is a Product node, let s be a string initially containing "(".
if (parens == GroupingParens::Include)
builder.append('(');
// Simplification already sorted children.
auto& children = operationNode.children();
ASSERT(children.size());
// Serialize root’s first child, and append it to s.
buildCSSTextRecursive(children.first(), builder);
// For each child of root beyond the first:
// If child is an Invert node, append " / " to s, then serialize the Invert’s child and append the result to s.
// Otherwise, append " * " to s, then serialize child and append the result to s.
for (unsigned i = 1; i < children.size(); ++i) {
auto& child = children[i];
if (is<CSSCalcInvertNode>(child)) {
builder.append(" / ");
buildCSSTextRecursive(downcast<CSSCalcInvertNode>(child.get()).child(), builder);
continue;
}
builder.append(" * ");
buildCSSTextRecursive(child, builder);
}
if (parens == GroupingParens::Include)
builder.append(')');
return;
}
// If root is anything but a Sum, Negate, Product, or Invert node, serialize a math function for the
// function corresponding to the node type, treating the node’s children as the function’s
// comma-separated calculation arguments, and return the result.
builder.append(functionPrefixForOperator(operationNode.calcOperator()));
auto& children = operationNode.children();
ASSERT(children.size());
buildCSSTextRecursive(children.first(), builder, GroupingParens::Omit);
for (unsigned i = 1; i < children.size(); ++i) {
builder.append(", ");
buildCSSTextRecursive(children[i], builder, GroupingParens::Omit);
}
builder.append(')');
return;
}
if (is<CSSCalcNegateNode>(node)) {
auto& negateNode = downcast<CSSCalcNegateNode>(node);
// If root is a Negate node, let s be a string initially containing "(-1 * ".
builder.append("-1 *");
buildCSSTextRecursive(negateNode.child(), builder);
return;
}
if (is<CSSCalcInvertNode>(node)) {
auto& invertNode = downcast<CSSCalcInvertNode>(node);
// If root is an Invert node, let s be a string initially containing "(1 / ".
builder.append("1 / ");
buildCSSTextRecursive(invertNode.child(), builder);
return;
}
}
void CSSCalcOperationNode::dump(TextStream& ts) const
{
ts << "calc operation " << m_operator << " (category: " << category() << ", type " << primitiveType() << ")";
TextStream::GroupScope scope(ts);
ts << m_children.size() << " children";
for (auto& child : m_children)
ts.dumpProperty("node", child);
}
bool CSSCalcOperationNode::equals(const CSSCalcExpressionNode& exp) const
{
if (type() != exp.type())
return false;
const CSSCalcOperationNode& other = static_cast<const CSSCalcOperationNode&>(exp);
if (m_children.size() != other.m_children.size() || m_operator != other.m_operator)
return false;
for (size_t i = 0; i < m_children.size(); ++i) {
if (!compareCSSValue(m_children[i], other.m_children[i]))
return false;
}
return true;
}
double CSSCalcOperationNode::evaluateOperator(CalcOperator op, const Vector<double>& children)
{
switch (op) {
case CalcOperator::Add: {
double sum = 0;
for (auto& child : children)
sum += child;
return sum;
}
case CalcOperator::Subtract:
ASSERT(children.size() == 2);
return children[0] - children[1];
case CalcOperator::Multiply: {
double product = 1;
for (auto& child : children)
product *= child;
return product;
}
case CalcOperator::Divide:
ASSERT(children.size() == 1 || children.size() == 2);
if (children.size() == 1)
return std::numeric_limits<double>::quiet_NaN();
return children[0] / children[1];
case CalcOperator::Min: {
if (children.isEmpty())
return std::numeric_limits<double>::quiet_NaN();
double minimum = children[0];
for (auto child : children)
minimum = std::min(minimum, child);
return minimum;
}
case CalcOperator::Max: {
if (children.isEmpty())
return std::numeric_limits<double>::quiet_NaN();
double maximum = children[0];
for (auto child : children)
maximum = std::max(maximum, child);
return maximum;
}
case CalcOperator::Clamp: {
if (children.size() != 3)
return std::numeric_limits<double>::quiet_NaN();
double min = children[0];
double value = children[1];
double max = children[2];
return std::max(min, std::min(value, max));
}
}
ASSERT_NOT_REACHED();
return 0;
}
}
|