1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
|
/*
* Copyright (C) 2014 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "GeometryUtilities.h"
#include "FloatQuad.h"
#include <wtf/MathExtras.h>
#include <wtf/Vector.h>
namespace WebCore {
float euclidianDistance(const FloatSize& delta)
{
return std::hypot(delta.width(), delta.height());
}
float euclidianDistance(const FloatPoint& p1, const FloatPoint& p2)
{
return euclidianDistance(p1 - p2);
}
float findSlope(const FloatPoint& p1, const FloatPoint& p2, float& c)
{
if (p2.x() == p1.x())
return std::numeric_limits<float>::infinity();
// y = mx + c
float slope = (p2.y() - p1.y()) / (p2.x() - p1.x());
c = p1.y() - slope * p1.x();
return slope;
}
bool findIntersection(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& d1, const FloatPoint& d2, FloatPoint& intersection)
{
float pOffset = 0;
float pSlope = findSlope(p1, p2, pOffset);
float dOffset = 0;
float dSlope = findSlope(d1, d2, dOffset);
if (dSlope == pSlope)
return false;
if (pSlope == std::numeric_limits<float>::infinity()) {
intersection.setX(p1.x());
intersection.setY(dSlope * intersection.x() + dOffset);
return true;
}
if (dSlope == std::numeric_limits<float>::infinity()) {
intersection.setX(d1.x());
intersection.setY(pSlope * intersection.x() + pOffset);
return true;
}
// Find x at intersection, where ys overlap; x = (c' - c) / (m - m')
intersection.setX((dOffset - pOffset) / (pSlope - dSlope));
intersection.setY(pSlope * intersection.x() + pOffset);
return true;
}
IntRect unionRect(const Vector<IntRect>& rects)
{
IntRect result;
for (auto& rect : rects)
result.unite(rect);
return result;
}
IntRect unionRectIgnoringZeroRects(const Vector<IntRect>& rects)
{
IntRect result;
for (auto& rect : rects)
result.uniteIfNonZero(rect);
return result;
}
FloatRect unionRect(const Vector<FloatRect>& rects)
{
FloatRect result;
for (auto& rect : rects)
result.unite(rect);
return result;
}
FloatRect unionRectIgnoringZeroRects(const Vector<FloatRect>& rects)
{
FloatRect result;
for (auto& rect : rects)
result.uniteIfNonZero(rect);
return result;
}
FloatPoint mapPoint(FloatPoint p, const FloatRect& srcRect, const FloatRect& destRect)
{
if (!srcRect.width() || !srcRect.height())
return p;
float widthScale = destRect.width() / srcRect.width();
float heightScale = destRect.height() / srcRect.height();
return {
destRect.x() + (p.x() - srcRect.x()) * widthScale,
destRect.y() + (p.y() - srcRect.y()) * heightScale
};
}
FloatRect mapRect(const FloatRect& r, const FloatRect& srcRect, const FloatRect& destRect)
{
if (!srcRect.width() || !srcRect.height())
return FloatRect();
float widthScale = destRect.width() / srcRect.width();
float heightScale = destRect.height() / srcRect.height();
return {
destRect.x() + (r.x() - srcRect.x()) * widthScale,
destRect.y() + (r.y() - srcRect.y()) * heightScale,
r.width() * widthScale,
r.height() * heightScale
};
}
FloatRect largestRectWithAspectRatioInsideRect(float aspectRatio, const FloatRect& srcRect)
{
FloatRect destRect = srcRect;
if (aspectRatio > srcRect.size().aspectRatio()) {
float dy = destRect.width() / aspectRatio - destRect.height();
destRect.inflateY(dy / 2);
} else {
float dx = destRect.height() * aspectRatio - destRect.width();
destRect.inflateX(dx / 2);
}
return destRect;
}
FloatRect boundsOfRotatingRect(const FloatRect& r)
{
// Compute the furthest corner from the origin.
float maxCornerDistance = euclidianDistance(FloatPoint(), r.minXMinYCorner());
maxCornerDistance = std::max(maxCornerDistance, euclidianDistance(FloatPoint(), r.maxXMinYCorner()));
maxCornerDistance = std::max(maxCornerDistance, euclidianDistance(FloatPoint(), r.minXMaxYCorner()));
maxCornerDistance = std::max(maxCornerDistance, euclidianDistance(FloatPoint(), r.maxXMaxYCorner()));
return FloatRect(-maxCornerDistance, -maxCornerDistance, 2 * maxCornerDistance, 2 * maxCornerDistance);
}
FloatRect smallestRectWithAspectRatioAroundRect(float aspectRatio, const FloatRect& srcRect)
{
FloatRect destRect = srcRect;
if (aspectRatio < srcRect.size().aspectRatio()) {
float dy = destRect.width() / aspectRatio - destRect.height();
destRect.inflateY(dy / 2);
} else {
float dx = destRect.height() * aspectRatio - destRect.width();
destRect.inflateX(dx / 2);
}
return destRect;
}
FloatSize sizeWithAreaAndAspectRatio(float area, float aspectRatio)
{
auto scaledWidth = std::sqrt(area * aspectRatio);
return { scaledWidth, scaledWidth / aspectRatio };
}
bool ellipseContainsPoint(const FloatPoint& center, const FloatSize& radii, const FloatPoint& point)
{
if (radii.width() <= 0 || radii.height() <= 0)
return false;
// First, offset the query point so that the ellipse is effectively centered at the origin.
FloatPoint transformedPoint(point);
transformedPoint.move(-center.x(), -center.y());
// If the point lies outside of the bounding box determined by the radii of the ellipse, it can't possibly
// be contained within the ellipse, so bail early.
if (transformedPoint.x() < -radii.width() || transformedPoint.x() > radii.width() || transformedPoint.y() < -radii.height() || transformedPoint.y() > radii.height())
return false;
// Let (x, y) represent the translated point, and let (Rx, Ry) represent the radii of an ellipse centered at the origin.
// (x, y) is contained within the ellipse if, after scaling the ellipse to be a unit circle, the identically scaled
// point lies within that unit circle. In other words, the squared distance (x/Rx)^2 + (y/Ry)^2 of the transformed point
// to the origin is no greater than 1. This is equivalent to checking whether or not the point (xRy, yRx) lies within a
// circle of radius RxRy.
transformedPoint.scale(radii.height(), radii.width());
auto transformedRadius = radii.width() * radii.height();
// We can bail early if |xRy| + |yRx| <= RxRy to avoid additional multiplications, since that means the Manhattan distance
// of the transformed point is less than the radius, so the point must lie within the transformed circle.
return std::abs(transformedPoint.x()) + std::abs(transformedPoint.y()) <= transformedRadius || transformedPoint.lengthSquared() <= transformedRadius * transformedRadius;
}
FloatPoint midPoint(const FloatPoint& first, const FloatPoint& second)
{
return { (first.x() + second.x()) / 2, (first.y() + second.y()) / 2 };
}
static float dotProduct(const FloatSize& u, const FloatSize& v)
{
return u.width() * v.width() + u.height() * v.height();
}
static float angleBetweenVectors(const FloatSize& u, const FloatSize& v)
{
auto magnitudes = u.diagonalLength() * v.diagonalLength();
return magnitudes ? acos(clampTo<float>(dotProduct(u, v) / magnitudes, -1, 1)) : 0;
}
RotatedRect rotatedBoundingRectWithMinimumAngleOfRotation(const FloatQuad& quad, std::optional<float> minRotationInRadians)
{
constexpr auto twoPiFloat = 2 * piFloat;
auto minRotationAmount = minRotationInRadians.value_or(std::numeric_limits<float>::epsilon());
auto leftMidPoint = midPoint(quad.p1(), quad.p4());
auto rightMidPoint = midPoint(quad.p2(), quad.p3());
auto widthVector = rightMidPoint - leftMidPoint;
auto midPointToMidPointDistance = widthVector.diagonalLength();
int signOfWidthVectorHeight = widthVector.height() < 0 ? -1 : 1;
auto angle = midPointToMidPointDistance ? signOfWidthVectorHeight * acos(widthVector.width() / midPointToMidPointDistance) : 0;
if (angle < 0)
angle += twoPiFloat;
if (std::abs(angle) < minRotationAmount || std::abs(twoPiFloat - angle) < minRotationAmount) {
auto boundingBox = quad.boundingBox();
return { boundingBox.center(), boundingBox.size(), 0 };
}
auto heightVector = FloatSize { widthVector.height(), -widthVector.width() };
auto leftPerpendicularAngle = angleBetweenVectors(heightVector, quad.p1() - leftMidPoint);
auto rightPerpendicularAngle = angleBetweenVectors(heightVector, quad.p2() - rightMidPoint);
auto leftHypotenuseLength = (leftMidPoint - quad.p1()).diagonalLength();
auto rightHypotenuseLength = (rightMidPoint - quad.p2()).diagonalLength();
auto leftMargin = leftHypotenuseLength * sin(leftPerpendicularAngle);
auto rightMargin = rightHypotenuseLength * sin(rightPerpendicularAngle);
auto width = midPointToMidPointDistance + leftMargin + rightMargin;
auto height = 2 * std::max(leftHypotenuseLength * cos(leftPerpendicularAngle), rightHypotenuseLength * cos(rightPerpendicularAngle));
auto leftMidToCenterDistance = (midPointToMidPointDistance + rightMargin - leftMargin) / 2;
auto center = leftMidPoint + (widthVector * leftMidToCenterDistance / midPointToMidPointDistance);
return { center, { width, height }, angle };
}
}
|