File: GeometryUtilities.cpp

package info (click to toggle)
webkit2gtk 2.36.4-1~deb10u1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 293,692 kB
  • sloc: cpp: 2,617,621; javascript: 191,348; ansic: 125,749; xml: 63,766; python: 34,562; ruby: 16,868; perl: 15,491; asm: 9,864; yacc: 2,324; sh: 2,018; lex: 1,319; java: 935; makefile: 183; pascal: 60
file content (271 lines) | stat: -rw-r--r-- 10,506 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
/*
 * Copyright (C) 2014 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "GeometryUtilities.h"

#include "FloatQuad.h"
#include <wtf/MathExtras.h>
#include <wtf/Vector.h>

namespace WebCore {

float euclidianDistance(const FloatSize& delta)
{
    return std::hypot(delta.width(), delta.height());
}

float euclidianDistance(const FloatPoint& p1, const FloatPoint& p2)
{
    return euclidianDistance(p1 - p2);
}

float findSlope(const FloatPoint& p1, const FloatPoint& p2, float& c)
{
    if (p2.x() == p1.x())
        return std::numeric_limits<float>::infinity();

    // y = mx + c
    float slope = (p2.y() - p1.y()) / (p2.x() - p1.x());
    c = p1.y() - slope * p1.x();
    return slope;
}

bool findIntersection(const FloatPoint& p1, const FloatPoint& p2, const FloatPoint& d1, const FloatPoint& d2, FloatPoint& intersection) 
{
    float pOffset = 0;
    float pSlope = findSlope(p1, p2, pOffset);

    float dOffset = 0;
    float dSlope = findSlope(d1, d2, dOffset);

    if (dSlope == pSlope)
        return false;
    
    if (pSlope == std::numeric_limits<float>::infinity()) {
        intersection.setX(p1.x());
        intersection.setY(dSlope * intersection.x() + dOffset);
        return true;
    }
    if (dSlope == std::numeric_limits<float>::infinity()) {
        intersection.setX(d1.x());
        intersection.setY(pSlope * intersection.x() + pOffset);
        return true;
    }
    
    // Find x at intersection, where ys overlap; x = (c' - c) / (m - m')
    intersection.setX((dOffset - pOffset) / (pSlope - dSlope));
    intersection.setY(pSlope * intersection.x() + pOffset);
    return true;
}

IntRect unionRect(const Vector<IntRect>& rects)
{
    IntRect result;
    for (auto& rect : rects)
        result.unite(rect);
    return result;
}

IntRect unionRectIgnoringZeroRects(const Vector<IntRect>& rects)
{
    IntRect result;
    for (auto& rect : rects)
        result.uniteIfNonZero(rect);
    return result;
}

FloatRect unionRect(const Vector<FloatRect>& rects)
{
    FloatRect result;
    for (auto& rect : rects)
        result.unite(rect);
    return result;
}

FloatRect unionRectIgnoringZeroRects(const Vector<FloatRect>& rects)
{
    FloatRect result;
    for (auto& rect : rects)
        result.uniteIfNonZero(rect);
    return result;
}

FloatPoint mapPoint(FloatPoint p, const FloatRect& srcRect, const FloatRect& destRect)
{
    if (!srcRect.width() || !srcRect.height())
        return p;

    float widthScale = destRect.width() / srcRect.width();
    float heightScale = destRect.height() / srcRect.height();

    return {
        destRect.x() + (p.x() - srcRect.x()) * widthScale,
        destRect.y() + (p.y() - srcRect.y()) * heightScale
    };
}

FloatRect mapRect(const FloatRect& r, const FloatRect& srcRect, const FloatRect& destRect)
{
    if (!srcRect.width() || !srcRect.height())
        return FloatRect();

    float widthScale = destRect.width() / srcRect.width();
    float heightScale = destRect.height() / srcRect.height();
    return {
        destRect.x() + (r.x() - srcRect.x()) * widthScale,
        destRect.y() + (r.y() - srcRect.y()) * heightScale,
        r.width() * widthScale,
        r.height() * heightScale
    };
}

FloatRect largestRectWithAspectRatioInsideRect(float aspectRatio, const FloatRect& srcRect)
{
    FloatRect destRect = srcRect;

    if (aspectRatio > srcRect.size().aspectRatio()) {
        float dy = destRect.width() / aspectRatio - destRect.height();
        destRect.inflateY(dy / 2);
    } else {
        float dx = destRect.height() * aspectRatio - destRect.width();
        destRect.inflateX(dx / 2);
    }
    return destRect;
}

FloatRect boundsOfRotatingRect(const FloatRect& r)
{
    // Compute the furthest corner from the origin.
    float maxCornerDistance = euclidianDistance(FloatPoint(), r.minXMinYCorner());
    maxCornerDistance = std::max(maxCornerDistance, euclidianDistance(FloatPoint(), r.maxXMinYCorner()));
    maxCornerDistance = std::max(maxCornerDistance, euclidianDistance(FloatPoint(), r.minXMaxYCorner()));
    maxCornerDistance = std::max(maxCornerDistance, euclidianDistance(FloatPoint(), r.maxXMaxYCorner()));
    
    return FloatRect(-maxCornerDistance, -maxCornerDistance, 2 * maxCornerDistance, 2 * maxCornerDistance);
}

FloatRect smallestRectWithAspectRatioAroundRect(float aspectRatio, const FloatRect& srcRect)
{
    FloatRect destRect = srcRect;

    if (aspectRatio < srcRect.size().aspectRatio()) {
        float dy = destRect.width() / aspectRatio - destRect.height();
        destRect.inflateY(dy / 2);
    } else {
        float dx = destRect.height() * aspectRatio - destRect.width();
        destRect.inflateX(dx / 2);
    }
    return destRect;
}

FloatSize sizeWithAreaAndAspectRatio(float area, float aspectRatio)
{
    auto scaledWidth = std::sqrt(area * aspectRatio);
    return { scaledWidth, scaledWidth / aspectRatio };
}

bool ellipseContainsPoint(const FloatPoint& center, const FloatSize& radii, const FloatPoint& point)
{
    if (radii.width() <= 0 || radii.height() <= 0)
        return false;

    // First, offset the query point so that the ellipse is effectively centered at the origin.
    FloatPoint transformedPoint(point);
    transformedPoint.move(-center.x(), -center.y());

    // If the point lies outside of the bounding box determined by the radii of the ellipse, it can't possibly
    // be contained within the ellipse, so bail early.
    if (transformedPoint.x() < -radii.width() || transformedPoint.x() > radii.width() || transformedPoint.y() < -radii.height() || transformedPoint.y() > radii.height())
        return false;

    // Let (x, y) represent the translated point, and let (Rx, Ry) represent the radii of an ellipse centered at the origin.
    // (x, y) is contained within the ellipse if, after scaling the ellipse to be a unit circle, the identically scaled
    // point lies within that unit circle. In other words, the squared distance (x/Rx)^2 + (y/Ry)^2 of the transformed point
    // to the origin is no greater than 1. This is equivalent to checking whether or not the point (xRy, yRx) lies within a
    // circle of radius RxRy.
    transformedPoint.scale(radii.height(), radii.width());
    auto transformedRadius = radii.width() * radii.height();

    // We can bail early if |xRy| + |yRx| <= RxRy to avoid additional multiplications, since that means the Manhattan distance
    // of the transformed point is less than the radius, so the point must lie within the transformed circle.
    return std::abs(transformedPoint.x()) + std::abs(transformedPoint.y()) <= transformedRadius || transformedPoint.lengthSquared() <= transformedRadius * transformedRadius;
}

FloatPoint midPoint(const FloatPoint& first, const FloatPoint& second)
{
    return { (first.x() + second.x()) / 2, (first.y() + second.y()) / 2 };
}

static float dotProduct(const FloatSize& u, const FloatSize& v)
{
    return u.width() * v.width() + u.height() * v.height();
}

static float angleBetweenVectors(const FloatSize& u, const FloatSize& v)
{
    auto magnitudes = u.diagonalLength() * v.diagonalLength();
    return magnitudes ? acos(clampTo<float>(dotProduct(u, v) / magnitudes, -1, 1)) : 0;
}

RotatedRect rotatedBoundingRectWithMinimumAngleOfRotation(const FloatQuad& quad, std::optional<float> minRotationInRadians)
{
    constexpr auto twoPiFloat = 2 * piFloat;

    auto minRotationAmount = minRotationInRadians.value_or(std::numeric_limits<float>::epsilon());

    auto leftMidPoint = midPoint(quad.p1(), quad.p4());
    auto rightMidPoint = midPoint(quad.p2(), quad.p3());
    auto widthVector = rightMidPoint - leftMidPoint;

    auto midPointToMidPointDistance = widthVector.diagonalLength();
    int signOfWidthVectorHeight = widthVector.height() < 0 ? -1 : 1;
    auto angle = midPointToMidPointDistance ? signOfWidthVectorHeight * acos(widthVector.width() / midPointToMidPointDistance) : 0;
    if (angle < 0)
        angle += twoPiFloat;

    if (std::abs(angle) < minRotationAmount || std::abs(twoPiFloat - angle) < minRotationAmount) {
        auto boundingBox = quad.boundingBox();
        return { boundingBox.center(), boundingBox.size(), 0 };
    }

    auto heightVector = FloatSize { widthVector.height(), -widthVector.width() };
    auto leftPerpendicularAngle = angleBetweenVectors(heightVector, quad.p1() - leftMidPoint);
    auto rightPerpendicularAngle = angleBetweenVectors(heightVector, quad.p2() - rightMidPoint);

    auto leftHypotenuseLength = (leftMidPoint - quad.p1()).diagonalLength();
    auto rightHypotenuseLength = (rightMidPoint - quad.p2()).diagonalLength();

    auto leftMargin = leftHypotenuseLength * sin(leftPerpendicularAngle);
    auto rightMargin = rightHypotenuseLength * sin(rightPerpendicularAngle);
    auto width = midPointToMidPointDistance + leftMargin + rightMargin;
    auto height = 2 * std::max(leftHypotenuseLength * cos(leftPerpendicularAngle), rightHypotenuseLength * cos(rightPerpendicularAngle));

    auto leftMidToCenterDistance = (midPointToMidPointDistance + rightMargin - leftMargin) / 2;
    auto center = leftMidPoint + (widthVector * leftMidToCenterDistance / midPointToMidPointDistance);
    return { center, { width, height }, angle };
}

}