1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
|
/*
* Copyright (C) 2015-2020 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(B3_JIT)
#include "CPU.h"
#include "GPRInfo.h"
#include "JSExportMacros.h"
#include "Options.h"
namespace JSC { namespace B3 {
class Procedure;
extern const char* const tierName;
enum B3CompilationMode {
B3Mode,
AirMode
};
JS_EXPORT_PRIVATE bool shouldDumpIR(Procedure&, B3CompilationMode);
bool shouldDumpIRAtEachPhase(B3CompilationMode);
bool shouldValidateIR();
bool shouldValidateIRAtEachPhase();
bool shouldSaveIRBeforePhase();
template<typename BitsType, typename InputType>
inline bool isIdentical(InputType left, InputType right)
{
BitsType leftBits = bitwise_cast<BitsType>(left);
BitsType rightBits = bitwise_cast<BitsType>(right);
return leftBits == rightBits;
}
inline bool isIdentical(int32_t left, int32_t right)
{
return isIdentical<int32_t>(left, right);
}
inline bool isIdentical(int64_t left, int64_t right)
{
return isIdentical<int64_t>(left, right);
}
inline bool isIdentical(double left, double right)
{
return isIdentical<int64_t>(left, right);
}
inline bool isIdentical(float left, float right)
{
return isIdentical<int32_t>(left, right);
}
template<typename ResultType, typename InputType, typename BitsType>
inline bool isRepresentableAsImpl(InputType originalValue)
{
// Convert the original value to the desired result type.
ResultType result = static_cast<ResultType>(originalValue);
// Convert the converted value back to the original type. The original value is representable
// using the new type if such round-tripping doesn't lose bits.
InputType newValue = static_cast<InputType>(result);
return isIdentical<BitsType>(originalValue, newValue);
}
template<typename ResultType>
inline bool isRepresentableAs(int32_t value)
{
return isRepresentableAsImpl<ResultType, int32_t, int32_t>(value);
}
template<typename ResultType>
inline bool isRepresentableAs(int64_t value)
{
return isRepresentableAsImpl<ResultType, int64_t, int64_t>(value);
}
template<typename ResultType>
inline bool isRepresentableAs(size_t value)
{
return isRepresentableAsImpl<ResultType, size_t, size_t>(value);
}
template<typename ResultType>
inline bool isRepresentableAs(double value)
{
return isRepresentableAsImpl<ResultType, double, int64_t>(value);
}
template<typename IntType>
static IntType chillDiv(IntType numerator, IntType denominator)
{
if (!denominator)
return 0;
if (denominator == -1 && numerator == std::numeric_limits<IntType>::min())
return std::numeric_limits<IntType>::min();
return numerator / denominator;
}
template<typename IntType>
static IntType chillMod(IntType numerator, IntType denominator)
{
if (!denominator)
return 0;
if (denominator == -1 && numerator == std::numeric_limits<IntType>::min())
return 0;
return numerator % denominator;
}
template<typename IntType>
static IntType chillUDiv(IntType numerator, IntType denominator)
{
typedef typename std::make_unsigned<IntType>::type UnsignedIntType;
UnsignedIntType unsignedNumerator = static_cast<UnsignedIntType>(numerator);
UnsignedIntType unsignedDenominator = static_cast<UnsignedIntType>(denominator);
if (!unsignedDenominator)
return 0;
return unsignedNumerator / unsignedDenominator;
}
template<typename IntType>
static IntType chillUMod(IntType numerator, IntType denominator)
{
typedef typename std::make_unsigned<IntType>::type UnsignedIntType;
UnsignedIntType unsignedNumerator = static_cast<UnsignedIntType>(numerator);
UnsignedIntType unsignedDenominator = static_cast<UnsignedIntType>(denominator);
if (!unsignedDenominator)
return 0;
return unsignedNumerator % unsignedDenominator;
}
template<typename FloatType>
static FloatType fMax(FloatType a, FloatType b)
{
if (std::isnan(a) || std::isnan(b))
return a + b;
if (a == static_cast<FloatType>(0.0) && b == static_cast<FloatType>(0.0) && std::signbit(a) != std::signbit(b))
return static_cast<FloatType>(0.0);
return std::max(a, b);
}
template<typename FloatType>
static FloatType fMin(FloatType a, FloatType b)
{
if (std::isnan(a) || std::isnan(b))
return a + b;
if (a == static_cast<FloatType>(0.0) && b == static_cast<FloatType>(0.0) && std::signbit(a) != std::signbit(b))
return static_cast<FloatType>(-0.0);
return std::min(a, b);
}
template<typename IntType>
static IntType rotateRight(IntType value, int32_t shift)
{
typedef typename std::make_unsigned<IntType>::type UnsignedIntType;
UnsignedIntType uValue = static_cast<UnsignedIntType>(value);
int32_t bits = sizeof(IntType) * 8;
int32_t mask = bits - 1;
shift &= mask;
return (uValue >> shift) | (uValue << ((bits - shift) & mask));
}
template<typename IntType>
static IntType rotateLeft(IntType value, int32_t shift)
{
typedef typename std::make_unsigned<IntType>::type UnsignedIntType;
UnsignedIntType uValue = static_cast<UnsignedIntType>(value);
int32_t bits = sizeof(IntType) * 8;
int32_t mask = bits - 1;
shift &= mask;
return (uValue << shift) | (uValue >> ((bits - shift) & mask));
}
inline unsigned defaultOptLevel()
{
// This should almost always return 2, but we allow this default to be lowered for testing. Some
// components will deliberately set the optLevel.
return Options::defaultB3OptLevel();
}
GPRReg extendedOffsetAddrRegister();
} } // namespace JSC::B3
#endif // ENABLE(B3_JIT)
|