1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279
|
/*
* Copyright (C) 2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "CSSCalcOperationNode.h"
#include "CSSCalcCategoryMapping.h"
#include "CSSCalcInvertNode.h"
#include "CSSCalcNegateNode.h"
#include "CSSCalcPrimitiveValueNode.h"
#include "CSSCalcValue.h"
#include "CSSPrimitiveValue.h"
#include "CSSUnits.h"
#include "CalcExpressionOperation.h"
#include "Logging.h"
#include <wtf/Algorithms.h>
#include <wtf/ListHashSet.h>
#include <wtf/text/TextStream.h>
namespace WebCore {
// This is the result of the "To add two types type1 and type2, perform the following steps:" rules.
static const CalculationCategory addSubtractResult[static_cast<unsigned>(CalculationCategory::Angle)][static_cast<unsigned>(CalculationCategory::Angle)] = {
// CalculationCategory::Number CalculationCategory::Length CalculationCategory::Percent CalculationCategory::PercentNumber CalculationCategory::PercentLength
{ CalculationCategory::Number, CalculationCategory::Other, CalculationCategory::PercentNumber, CalculationCategory::PercentNumber, CalculationCategory::Other }, // CalculationCategory::Number
{ CalculationCategory::Other, CalculationCategory::Length, CalculationCategory::PercentLength, CalculationCategory::Other, CalculationCategory::PercentLength }, // CalculationCategory::Length
{ CalculationCategory::PercentNumber, CalculationCategory::PercentLength, CalculationCategory::Percent, CalculationCategory::PercentNumber, CalculationCategory::PercentLength }, // CalculationCategory::Percent
{ CalculationCategory::PercentNumber, CalculationCategory::Other, CalculationCategory::PercentNumber, CalculationCategory::PercentNumber, CalculationCategory::Other }, // CalculationCategory::PercentNumber
{ CalculationCategory::Other, CalculationCategory::PercentLength, CalculationCategory::PercentLength, CalculationCategory::Other, CalculationCategory::PercentLength }, // CalculationCategory::PercentLength
};
static CalculationCategory determineCategory(const CSSCalcExpressionNode& leftSide, const CSSCalcExpressionNode& rightSide, CalcOperator op)
{
CalculationCategory leftCategory = leftSide.category();
CalculationCategory rightCategory = rightSide.category();
ASSERT(leftCategory < CalculationCategory::Other);
ASSERT(rightCategory < CalculationCategory::Other);
switch (op) {
case CalcOperator::Add:
case CalcOperator::Subtract:
if (leftCategory < CalculationCategory::Angle && rightCategory < CalculationCategory::Angle)
return addSubtractResult[static_cast<unsigned>(leftCategory)][static_cast<unsigned>(rightCategory)];
if (leftCategory == rightCategory)
return leftCategory;
return CalculationCategory::Other;
case CalcOperator::Multiply:
if (leftCategory != CalculationCategory::Number && rightCategory != CalculationCategory::Number)
return CalculationCategory::Other;
return leftCategory == CalculationCategory::Number ? rightCategory : leftCategory;
case CalcOperator::Divide:
if (rightCategory != CalculationCategory::Number)
return CalculationCategory::Other;
return leftCategory;
default:
ASSERT_NOT_REACHED();
return CalculationCategory::Other;
}
ASSERT_NOT_REACHED();
return CalculationCategory::Other;
}
// FIXME: Need to implement correct category computation per:
// <https://drafts.css-houdini.org/css-typed-om-1/#cssnumericvalue-invert-a-type>
// To invert a type type, perform the following steps:
// Let result be a new type with an initially empty ordered map and an initially null percent hint
// For each unit → exponent of type, set result[unit] to (-1 * exponent).
static CalculationCategory categoryForInvert(CalculationCategory category)
{
return category;
}
static CalculationCategory determineCategory(const Vector<Ref<CSSCalcExpressionNode>>& nodes, CalcOperator op)
{
if (nodes.isEmpty())
return CalculationCategory::Other;
auto currentCategory = nodes[0]->category();
for (unsigned i = 1; i < nodes.size(); ++i) {
const auto& node = nodes[i].get();
auto usedOperator = op;
if (node.type() == CSSCalcExpressionNode::Type::CssCalcInvert)
usedOperator = CalcOperator::Divide;
auto nextCategory = node.category();
switch (usedOperator) {
case CalcOperator::Add:
case CalcOperator::Subtract:
// <https://drafts.css-houdini.org/css-typed-om-1/#cssnumericvalue-add-two-types>
// At a + or - sub-expression, attempt to add the types of the left and right arguments.
// If this returns failure, the entire calculation’s type is failure. Otherwise, the sub-expression’s type is the returned type.
if (currentCategory < CalculationCategory::Angle && nextCategory < CalculationCategory::Angle)
currentCategory = addSubtractResult[static_cast<unsigned>(currentCategory)][static_cast<unsigned>(nextCategory)];
else if (currentCategory != nextCategory)
return CalculationCategory::Other;
break;
case CalcOperator::Multiply:
// <https://drafts.css-houdini.org/css-typed-om-1/#cssnumericvalue-multiply-two-types>
// At a * sub-expression, multiply the types of the left and right arguments. The sub-expression’s type is the returned result.
if (currentCategory != CalculationCategory::Number && nextCategory != CalculationCategory::Number)
return CalculationCategory::Other;
currentCategory = currentCategory == CalculationCategory::Number ? nextCategory : currentCategory;
break;
case CalcOperator::Divide: {
auto invertCategory = categoryForInvert(nextCategory);
// At a / sub-expression, let left type be the result of finding the types of its left argument,
// and right type be the result of finding the types of its right argument and then inverting it.
// The sub-expression’s type is the result of multiplying the left type and right type.
if (invertCategory != CalculationCategory::Number)
return CalculationCategory::Other;
break;
}
case CalcOperator::Pow:
case CalcOperator::Sqrt:
// The type of pow() and sqrt() functions must evaluate to a number.
return CalculationCategory::Number;
default:
return CalculationCategory::Other;
}
}
return currentCategory;
}
static CalculationCategory resolvedTypeForMinOrMaxOrClamp(CalculationCategory category, CalculationCategory destinationCategory)
{
switch (category) {
case CalculationCategory::Number:
case CalculationCategory::Length:
case CalculationCategory::PercentNumber:
case CalculationCategory::PercentLength:
case CalculationCategory::Angle:
case CalculationCategory::Time:
case CalculationCategory::Frequency:
case CalculationCategory::Resolution:
case CalculationCategory::Other:
return category;
case CalculationCategory::Percent:
if (destinationCategory == CalculationCategory::Length)
return CalculationCategory::PercentLength;
if (destinationCategory == CalculationCategory::Number)
return CalculationCategory::PercentNumber;
return category;
}
return CalculationCategory::Other;
}
static bool isSamePair(CalculationCategory a, CalculationCategory b, CalculationCategory x, CalculationCategory y)
{
return (a == x && b == y) || (a == y && b == x);
}
enum class SortingCategory {
Number,
Percent,
Dimension,
Other
};
static SortingCategory sortingCategoryForType(CSSUnitType unitType)
{
static constexpr SortingCategory sortOrder[] = {
SortingCategory::Number, // CalculationCategory::Number,
SortingCategory::Dimension, // CalculationCategory::Length,
SortingCategory::Percent, // CalculationCategory::Percent,
SortingCategory::Number, // CalculationCategory::PercentNumber,
SortingCategory::Dimension, // CalculationCategory::PercentLength,
SortingCategory::Dimension, // CalculationCategory::Angle,
SortingCategory::Dimension, // CalculationCategory::Time,
SortingCategory::Dimension, // CalculationCategory::Frequency,
SortingCategory::Dimension, // CalculationCategory::Resolution,
SortingCategory::Other, // UOther
};
static_assert(ARRAY_SIZE(sortOrder) == static_cast<unsigned>(CalculationCategory::Other) + 1, "sortOrder size should match UnitCategory");
return sortOrder[static_cast<unsigned>(calcUnitCategory(unitType))];
}
static SortingCategory sortingCategory(const CSSCalcExpressionNode& node)
{
if (is<CSSCalcPrimitiveValueNode>(node))
return sortingCategoryForType(node.primitiveType());
return SortingCategory::Other;
}
static CSSUnitType primitiveTypeForCombination(const CSSCalcExpressionNode& node)
{
if (is<CSSCalcPrimitiveValueNode>(node))
return node.primitiveType();
return CSSUnitType::CSS_UNKNOWN;
}
static CSSCalcPrimitiveValueNode::UnitConversion conversionToAddValuesWithTypes(CSSUnitType firstType, CSSUnitType secondType)
{
if (firstType == CSSUnitType::CSS_UNKNOWN || secondType == CSSUnitType::CSS_UNKNOWN)
return CSSCalcPrimitiveValueNode::UnitConversion::Invalid;
auto firstCategory = calculationCategoryForCombination(firstType);
// Compatible types.
if (firstCategory != CalculationCategory::Other && firstCategory == calculationCategoryForCombination(secondType))
return CSSCalcPrimitiveValueNode::UnitConversion::Canonicalize;
// Matching types.
if (firstType == secondType && hasDoubleValue(firstType))
return CSSCalcPrimitiveValueNode::UnitConversion::Preserve;
return CSSCalcPrimitiveValueNode::UnitConversion::Invalid;
}
static CSSValueID functionFromOperator(CalcOperator op)
{
switch (op) {
case CalcOperator::Add:
case CalcOperator::Subtract:
case CalcOperator::Multiply:
case CalcOperator::Divide:
return CSSValueCalc;
case CalcOperator::Min:
return CSSValueMin;
case CalcOperator::Max:
return CSSValueMax;
case CalcOperator::Clamp:
return CSSValueClamp;
case CalcOperator::Pow:
return CSSValuePow;
case CalcOperator::Sqrt:
return CSSValueSqrt;
case CalcOperator::Hypot:
return CSSValueHypot;
case CalcOperator::Sin:
return CSSValueSin;
case CalcOperator::Cos:
return CSSValueCos;
case CalcOperator::Tan:
return CSSValueTan;
case CalcOperator::Exp:
return CSSValueExp;
case CalcOperator::Log:
return CSSValueLog;
case CalcOperator::Asin:
return CSSValueAsin;
case CalcOperator::Acos:
return CSSValueAcos;
case CalcOperator::Atan:
return CSSValueAtan;
case CalcOperator::Atan2:
return CSSValueAtan2;
case CalcOperator::Abs:
return CSSValueAbs;
case CalcOperator::Sign:
return CSSValueSign;
case CalcOperator::Mod:
return CSSValueMod;
case CalcOperator::Rem:
return CSSValueRem;
case CalcOperator::Round:
return CSSValueRound;
case CalcOperator::Up:
return CSSValueUp;
case CalcOperator::Down:
return CSSValueDown;
case CalcOperator::Nearest:
return CSSValueNearest;
case CalcOperator::ToZero:
return CSSValueToZero;
}
return CSSValueCalc;
}
static std::optional<CalculationCategory> commonCategory(const Vector<Ref<CSSCalcExpressionNode>>& values)
{
if (values.isEmpty())
return std::nullopt;
auto expectedCategory = values[0]->category();
for (size_t i = 1; i < values.size(); ++i) {
if (values[i]->category() != expectedCategory)
return std::nullopt;
}
return expectedCategory;
}
// https://drafts.csswg.org/css-values-4/#sort-a-calculations-children
static void sortChildren(Vector<Ref<CSSCalcExpressionNode>>& children)
{
std::stable_sort(children.begin(), children.end(), [](auto& first, auto& second) {
// Sort order: number, percentage, dimension, other.
SortingCategory firstCategory = sortingCategory(first.get());
SortingCategory secondCategory = sortingCategory(second.get());
if (firstCategory == SortingCategory::Dimension && secondCategory == SortingCategory::Dimension) {
// If nodes contains any dimensions, remove them from nodes, sort them by their units, and append them to ret.
auto firstUnitString = CSSPrimitiveValue::unitTypeString(first->primitiveType());
auto secondUnitString = CSSPrimitiveValue::unitTypeString(second->primitiveType());
return codePointCompareLessThan(firstUnitString, secondUnitString);
}
return static_cast<unsigned>(firstCategory) < static_cast<unsigned>(secondCategory);
});
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::create(CalcOperator op, RefPtr<CSSCalcExpressionNode>&& leftSide, RefPtr<CSSCalcExpressionNode>&& rightSide)
{
if (!leftSide || !rightSide)
return nullptr;
ASSERT(op == CalcOperator::Add || op == CalcOperator::Multiply);
ASSERT(leftSide->category() < CalculationCategory::Other);
ASSERT(rightSide->category() < CalculationCategory::Other);
auto newCategory = determineCategory(*leftSide, *rightSide, op);
if (newCategory == CalculationCategory::Other) {
LOG_WITH_STREAM(Calc, stream << "Failed to create CSSCalcOperationNode " << op << " node because unable to determine category from " << prettyPrintNode(*leftSide) << " and " << *rightSide);
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(newCategory, op, leftSide.releaseNonNull(), rightSide.releaseNonNull()));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createSum(Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.isEmpty())
return nullptr;
auto newCategory = determineCategory(values, CalcOperator::Add);
if (newCategory == CalculationCategory::Other) {
LOG_WITH_STREAM(Calc, stream << "Failed to create sum node because unable to determine category from " << prettyPrintNodes(values));
newCategory = determineCategory(values, CalcOperator::Add);
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(newCategory, CalcOperator::Add, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createInverseTrig(CalcOperator op, Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.size() != 1)
return nullptr;
auto childCategory = values[0]->category();
if (childCategory != CalculationCategory::Number) {
LOG_WITH_STREAM(Calc, stream << "Failed to create trig node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(CalculationCategory::Angle, op, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createAtan2(Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.size() != 2)
return nullptr;
auto child1Category = values[0]->category();
auto child2Category = values[1]->category();
if (child1Category != child2Category) {
LOG_WITH_STREAM(Calc, stream << "Failed to create atan2 node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(CalculationCategory::Angle, CalcOperator::Atan2, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createProduct(Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.isEmpty())
return nullptr;
auto newCategory = determineCategory(values, CalcOperator::Multiply);
if (newCategory == CalculationCategory::Other) {
LOG_WITH_STREAM(Calc, stream << "Failed to create product node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(newCategory, CalcOperator::Multiply, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createLog(Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.size() != 1 && values.size() != 2)
return nullptr;
for (auto& value : values) {
if (value->category() != CalculationCategory::Number) {
LOG_WITH_STREAM(Calc, stream << "Failed to create log node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
}
return adoptRef(new CSSCalcOperationNode(CalculationCategory::Number, CalcOperator::Log, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createExp(Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.size() != 1)
return nullptr;
if (values[0]->category() != CalculationCategory::Number) {
LOG_WITH_STREAM(Calc, stream << "Failed to create exp node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(CalculationCategory::Number, CalcOperator::Exp, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createPowOrSqrt(CalcOperator op, Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (op == CalcOperator::Pow && values.size() != 2)
return nullptr;
if (op == CalcOperator::Sqrt && values.size() != 1)
return nullptr;
if (commonCategory(values) != CalculationCategory::Number) {
LOG_WITH_STREAM(Calc, stream << "Failed to create " << op << "node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(CalculationCategory::Number, op, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createHypot(Vector<Ref<CSSCalcExpressionNode>>&& values)
{
auto expectedCategory = commonCategory(values);
if (!expectedCategory || expectedCategory == CalculationCategory::Other) {
LOG_WITH_STREAM(Calc, stream << "Failed to create hypot node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(*expectedCategory, CalcOperator::Hypot, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createMinOrMaxOrClamp(CalcOperator op, Vector<Ref<CSSCalcExpressionNode>>&& values, CalculationCategory destinationCategory)
{
ASSERT(op == CalcOperator::Min || op == CalcOperator::Max || op == CalcOperator::Clamp);
ASSERT_IMPLIES(op == CalcOperator::Clamp, values.size() == 3);
std::optional<CalculationCategory> category = std::nullopt;
for (auto& value : values) {
auto valueCategory = resolvedTypeForMinOrMaxOrClamp(value->category(), destinationCategory);
ASSERT(valueCategory < CalculationCategory::Other);
if (!category) {
if (valueCategory == CalculationCategory::Other) {
LOG_WITH_STREAM(Calc, stream << "Failed to create CSSCalcOperationNode " << op << " node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
category = valueCategory;
}
if (category != valueCategory) {
if (isSamePair(category.value(), valueCategory, CalculationCategory::Length, CalculationCategory::PercentLength)) {
category = CalculationCategory::PercentLength;
continue;
}
if (isSamePair(category.value(), valueCategory, CalculationCategory::Number, CalculationCategory::PercentNumber)) {
category = CalculationCategory::PercentNumber;
continue;
}
return nullptr;
}
}
return adoptRef(new CSSCalcOperationNode(category.value(), op, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createTrig(CalcOperator op, Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.size() != 1)
return nullptr;
auto childCategory = values[0]->category();
if (childCategory != CalculationCategory::Number && childCategory != CalculationCategory::Angle) {
LOG_WITH_STREAM(Calc, stream << "Failed to create trig node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(CalculationCategory::Number, op, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createSign(CalcOperator op, Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.size() != 1)
return nullptr;
auto newCategory = determineCategory(values, op);
if (op == CalcOperator::Sign)
newCategory = CalculationCategory::Number;
if (newCategory == CalculationCategory::Other) {
LOG_WITH_STREAM(Calc, stream << "Failed to create sign-related node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(newCategory, op, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createStep(CalcOperator op, Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.size() != 2)
return nullptr;
if (values[0]->category() != values[1]->category()) {
LOG_WITH_STREAM(Calc, stream << "Failed to create stepped value node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
return adoptRef(new CSSCalcOperationNode(values[0]->category(), op, WTFMove(values)));
}
static bool validateRoundChildren(Vector<Ref<CSSCalcExpressionNode>>& values)
{
// for 3 children 1st node must be round constant
if (values.size() == 3) {
if (!is<CSSCalcOperationNode>(values[0]) || !(downcast<CSSCalcOperationNode>(values[0].get()).isRoundOperation()))
return false;
}
// for 2 children should not have round constant anywhere but first node of 3
for (size_t i = values.size() == 2 ? 0 : 1; i < values.size(); i++) {
if (is<CSSCalcOperationNode>(values[i])) {
if (downcast<CSSCalcOperationNode>(values[i].get()).isRoundConstant())
return false;
}
}
// check that two categories of numerical values are the same
return values.rbegin()[1]->category() == values.rbegin()[0]->category();
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createRound(Vector<Ref<CSSCalcExpressionNode>>&& values)
{
if (values.size() != 2 && values.size() != 3)
return nullptr;
if (!validateRoundChildren(values)) {
LOG_WITH_STREAM(Calc, stream << "Failed to create round node because unable to determine category from " << prettyPrintNodes(values));
return nullptr;
}
CalcOperator roundType = values.size() == 2 ? CalcOperator::Nearest : downcast<CSSCalcOperationNode>(values[0].get()).calcOperator();
if (values.size() == 3)
values.remove(0);
return adoptRef(new CSSCalcOperationNode(values.rbegin()[0]->category(), roundType, WTFMove(values)));
}
RefPtr<CSSCalcOperationNode> CSSCalcOperationNode::createRoundConstant(CalcOperator op)
{
return adoptRef(new CSSCalcOperationNode(CalculationCategory::Number, op, { }));
}
void CSSCalcOperationNode::hoistChildrenWithOperator(CalcOperator op)
{
ASSERT(op == CalcOperator::Add || op == CalcOperator::Multiply);
auto hasChildWithOperator = [&] (CalcOperator op) {
for (auto& child : m_children) {
if (is<CSSCalcOperationNode>(child) && downcast<CSSCalcOperationNode>(child.get()).calcOperator() == op)
return true;
}
return false;
};
if (!hasChildWithOperator(op))
return;
Vector<Ref<CSSCalcExpressionNode>> newChildren;
for (auto& child : m_children) {
if (is<CSSCalcOperationNode>(child) && downcast<CSSCalcOperationNode>(child.get()).calcOperator() == op)
newChildren.appendVector(downcast<CSSCalcOperationNode>(child.get()).children());
else
newChildren.append(WTFMove(child));
}
newChildren.shrinkToFit();
m_children = WTFMove(newChildren);
}
bool CSSCalcOperationNode::canCombineAllChildren() const
{
if (isIdentity() || !m_children.size())
return false;
if (!is<CSSCalcPrimitiveValueNode>(m_children[0]))
return false;
auto firstUnitType = m_children[0]->primitiveType();
auto firstCategory = calculationCategoryForCombination(m_children[0]->primitiveType());
for (unsigned i = 1; i < m_children.size(); ++i) {
auto& node = m_children[i];
if (!is<CSSCalcPrimitiveValueNode>(node))
return false;
auto nodeUnitType = node->primitiveType();
auto nodeCategory = calculationCategoryForCombination(nodeUnitType);
if (nodeCategory != firstCategory)
return false;
if (nodeCategory == CalculationCategory::Other && nodeUnitType != firstUnitType)
return false;
if (!hasDoubleValue(nodeUnitType))
return false;
}
return true;
}
// https://w3c.github.io/csswg-drafts/css-values/#calc-simplification
void CSSCalcOperationNode::combineChildren()
{
if (isIdentity() || !m_children.size())
return;
m_isRoot = IsRoot::No;
if (m_children.size() < 2) {
if (isTrigNode() || isExpNode() || isSqrtNode()) {
double resolvedValue = doubleValue(m_children[0]->primitiveType());
auto newChild = CSSCalcPrimitiveValueNode::create(CSSPrimitiveValue::create(resolvedValue));
m_children.clear();
m_children.append(WTFMove(newChild));
}
if (isInverseTrigNode()) {
double resolvedValue = doubleValue(m_children[0]->primitiveType());
auto newChild = CSSCalcPrimitiveValueNode::create(CSSPrimitiveValue::create(resolvedValue, CSSUnitType::CSS_DEG));
m_children.clear();
m_children.append(WTFMove(newChild));
}
if ((isAbsOrSignNode() || isHypotNode()) && canCombineAllChildren()) {
double resolvedValue = doubleValue(m_children[0]->primitiveType());
auto combinedUnitType = isSignNode() ? CSSUnitType::CSS_NUMBER : m_children[0]->primitiveType();
auto newChild = CSSCalcPrimitiveValueNode::create(CSSPrimitiveValue::create(resolvedValue, combinedUnitType));
m_children.clear();
m_children.append(WTFMove(newChild));
}
return;
}
if (calcOperator() == CalcOperator::Add) {
// For each set of root’s children that are numeric values with identical units,
// remove those children and replace them with a single numeric value containing
// the sum of the removed nodes, and with the same unit.
Vector<Ref<CSSCalcExpressionNode>> newChildren;
newChildren.reserveInitialCapacity(m_children.size());
ListHashSet<CSSCalcExpressionNode*> remainingChildren;
for (auto& child : m_children)
remainingChildren.add(child.ptr());
while (!remainingChildren.isEmpty()) {
newChildren.uncheckedAppend(Ref { *remainingChildren.takeFirst() });
CSSUnitType previousType = primitiveTypeForCombination(newChildren.last());
for (auto it = remainingChildren.begin(); it != remainingChildren.end();) {
auto currentIterator = it;
++it;
auto& currentNode = **currentIterator;
CSSUnitType currentType = primitiveTypeForCombination(currentNode);
auto conversionType = conversionToAddValuesWithTypes(previousType, currentType);
if (conversionType == CSSCalcPrimitiveValueNode::UnitConversion::Invalid)
continue;
downcast<CSSCalcPrimitiveValueNode>(newChildren.last().get()).add(downcast<CSSCalcPrimitiveValueNode>(currentNode), conversionType);
remainingChildren.remove(currentIterator);
}
}
newChildren.shrinkToFit();
m_children = WTFMove(newChildren);
return;
}
if (calcOperator() == CalcOperator::Multiply) {
// If root has multiple children that are numbers (not percentages or dimensions),
// remove them and replace them with a single number containing the product of the removed nodes.
double multiplier = 1;
size_t numberNodeCount = 0;
CSSCalcExpressionNode* lastNonNumberNode = nullptr;
for (auto& child : m_children) {
if (primitiveTypeForCombination(child) != CSSUnitType::CSS_NUMBER) {
lastNonNumberNode = child.ptr();
continue;
}
multiplier *= downcast<CSSCalcPrimitiveValueNode>(child.get()).doubleValue(CSSUnitType::CSS_NUMBER);
++numberNodeCount;
}
Vector<Ref<CSSCalcExpressionNode>> newChildren;
newChildren.reserveInitialCapacity(m_children.size());
// If root contains only two children, one of which is a number (not a percentage or dimension) and the other of
// which is a Sum whose children are all numeric values, multiply all of the Sum’s children by the number, then
// return the Sum.
// The Sum's children simplification will have happened already.
bool didMultiply = false;
if (numberNodeCount && (m_children.size() - numberNodeCount) == 1) {
ASSERT(lastNonNumberNode);
auto multiplicandCategory = calcUnitCategory(primitiveTypeForCombination(*lastNonNumberNode));
if (multiplicandCategory != CalculationCategory::Other) {
newChildren.uncheckedAppend(Ref { *lastNonNumberNode });
downcast<CSSCalcPrimitiveValueNode>(newChildren[0].get()).multiply(multiplier);
didMultiply = true;
} else if (auto* sumNode = dynamicDowncast<CSSCalcOperationNode>(*lastNonNumberNode); sumNode && sumNode->calcOperator() == CalcOperator::Add) {
// If we're multiplying with another operation that is an addition and all the added children
// are percentages or dimensions, we should multiply each child and make this expression an
// addition.
auto allChildrenArePrimitiveValues = [](const Vector<Ref<CSSCalcExpressionNode>>& children) -> bool {
for (auto& child : children) {
if (!is<CSSCalcPrimitiveValueNode>(child))
return false;
}
return true;
};
auto& children = sumNode->children();
if (allChildrenArePrimitiveValues(children)) {
for (auto& child : children) {
newChildren.append(child.copyRef());
downcast<CSSCalcPrimitiveValueNode>(newChildren.last().get()).multiply(multiplier);
}
m_operator = CalcOperator::Add;
didMultiply = true;
}
}
}
if (!didMultiply) {
if (numberNodeCount) {
auto multiplierNode = CSSCalcPrimitiveValueNode::create(CSSPrimitiveValue::create(multiplier));
newChildren.uncheckedAppend(WTFMove(multiplierNode));
}
for (auto& child : m_children) {
if (primitiveTypeForCombination(child) != CSSUnitType::CSS_NUMBER)
newChildren.uncheckedAppend(child.copyRef());
}
}
newChildren.shrinkToFit();
m_children = WTFMove(newChildren);
}
if ((isMinOrMaxNode() || isHypotNode() || isClampNode()) && canCombineAllChildren()) {
auto combinedUnitType = m_children[0]->primitiveType();
auto involvesPercentageComparisons = [&]() {
return combinedUnitType == CSSUnitType::CSS_PERCENTAGE && m_children.size() > 1;
};
if (isMinOrMaxNode() && allowsNegativePercentageReference() && involvesPercentageComparisons())
return;
auto category = calculationCategoryForCombination(combinedUnitType);
if (category != CalculationCategory::Other)
combinedUnitType = canonicalUnitTypeForCalculationCategory(category);
double resolvedValue = doubleValue(combinedUnitType);
auto newChild = CSSCalcPrimitiveValueNode::create(CSSPrimitiveValue::create(resolvedValue, combinedUnitType));
m_children.clear();
m_children.append(WTFMove(newChild));
}
if (calcOperator() == CalcOperator::Pow) {
auto resolvedValue = doubleValue(m_children[0]->primitiveType());
auto newChild = CSSCalcPrimitiveValueNode::create(CSSPrimitiveValue::create(resolvedValue));
m_children.clear();
m_children.append(WTFMove(newChild));
}
if (calcOperator() == CalcOperator::Atan2) {
double resolvedValue = doubleValue(m_children[0]->primitiveType());
auto newChild = CSSCalcPrimitiveValueNode::create(CSSPrimitiveValue::create(resolvedValue, CSSUnitType::CSS_DEG));
m_children.clear();
m_children.append(WTFMove(newChild));
}
if ((isSteppedNode() || isRoundOperation()) && canCombineAllChildren()) {
auto combinedUnitType = m_children[0]->primitiveType();
double resolvedValue = doubleValue(combinedUnitType);
auto newChild = CSSCalcPrimitiveValueNode::create(CSSPrimitiveValue::create(resolvedValue, combinedUnitType));
m_children.clear();
m_children.append(WTFMove(newChild));
}
}
// https://drafts.csswg.org/css-values-4/#simplify-a-calculation-tree
Ref<CSSCalcExpressionNode> CSSCalcOperationNode::simplify(Ref<CSSCalcExpressionNode>&& rootNode)
{
return simplifyRecursive(WTFMove(rootNode), 0);
}
Ref<CSSCalcExpressionNode> CSSCalcOperationNode::simplifyRecursive(Ref<CSSCalcExpressionNode>&& rootNode, int depth)
{
if (is<CSSCalcOperationNode>(rootNode)) {
auto& operationNode = downcast<CSSCalcOperationNode>(rootNode.get());
auto& children = operationNode.children();
for (unsigned i = 0; i < children.size(); ++i) {
auto child = children[i].copyRef();
auto newNode = simplifyRecursive(WTFMove(child), depth + 1);
if (newNode.ptr() != children[i].ptr())
children[i] = WTFMove(newNode);
}
} else if (is<CSSCalcNegateNode>(rootNode)) {
auto& negateNode = downcast<CSSCalcNegateNode>(rootNode.get());
Ref<CSSCalcExpressionNode> child = negateNode.child();
auto newNode = simplifyRecursive(WTFMove(child), depth + 1);
if (newNode.ptr() != &negateNode.child())
negateNode.setChild(WTFMove(newNode));
} else if (is<CSSCalcInvertNode>(rootNode)) {
auto& invertNode = downcast<CSSCalcInvertNode>(rootNode.get());
Ref<CSSCalcExpressionNode> child = invertNode.child();
auto newNode = simplifyRecursive(WTFMove(child), depth + 1);
if (newNode.ptr() != &invertNode.child())
invertNode.setChild(WTFMove(newNode));
}
return simplifyNode(WTFMove(rootNode), depth);
}
inline void CSSCalcOperationNode::makeTopLevelCalc()
{
// Top level calc nodes where we need not preserve the function are changed into add nodes because
// that’s the best way to make them serialize as "calc(xxx)".
m_operator = CalcOperator::Add;
}
Ref<CSSCalcExpressionNode> CSSCalcOperationNode::simplifyNode(Ref<CSSCalcExpressionNode>&& rootNode, int depth)
{
if (is<CSSCalcPrimitiveValueNode>(rootNode)) {
// If root is a percentage that will be resolved against another value, and there is enough information
// available to resolve it, do so, and express the resulting numeric value in the appropriate canonical
// unit. Return the value.
// If root is a dimension that is not expressed in its canonical unit, and there is enough information
// available to convert it to the canonical unit, do so, and return the value.
auto& primitiveValueNode = downcast<CSSCalcPrimitiveValueNode>(rootNode.get());
primitiveValueNode.canonicalizeUnit();
return WTFMove(rootNode);
}
// If root is an operator node that’s not one of the calc-operator nodes, and all of its children are numeric values
// with enough information to computed the operation root represents, return the result of running root’s operation
// using its children, expressed in the result’s canonical unit.
if (is<CSSCalcOperationNode>(rootNode)) {
auto& calcOperationNode = downcast<CSSCalcOperationNode>(rootNode.get());
// Identity nodes have only one child and perform no operation on their child.
if (calcOperationNode.isIdentity() && depth)
return WTFMove(calcOperationNode.children()[0]);
if (calcOperationNode.isCalcSumNode()) {
calcOperationNode.hoistChildrenWithOperator(CalcOperator::Add);
}
if (calcOperationNode.isCalcProductNode()) {
calcOperationNode.hoistChildrenWithOperator(CalcOperator::Multiply);
}
if (calcOperationNode.isNonCalcFunction() || calcOperationNode.isCalcProductNode() || calcOperationNode.isCalcSumNode())
calcOperationNode.combineChildren();
// If only one child remains, return the child (except at the root).
auto shouldCombineParentWithOnlyChild = [](CSSCalcOperationNode& parent, int depth)
{
if (parent.children().size() != 1)
return false;
// Always simplify below the root.
if (depth)
return true;
if (parent.isNonCalcFunction() && (parent.isIdentity() || is<CSSCalcPrimitiveValueNode>(parent.children()[0]))) {
parent.makeTopLevelCalc();
if (is<CSSCalcPrimitiveValueNode>(parent.children()[0]))
return false;
}
// At the root, preserve the root function by only merging nodes with the same function.
auto& child = parent.children().first();
if (!is<CSSCalcOperationNode>(child))
return false;
auto parentFunction = functionFromOperator(parent.calcOperator());
auto childFunction = functionFromOperator(downcast<CSSCalcOperationNode>(child.get()).calcOperator());
return childFunction == parentFunction;
};
if (shouldCombineParentWithOnlyChild(calcOperationNode, depth))
return WTFMove(calcOperationNode.children().first());
return WTFMove(rootNode);
}
if (is<CSSCalcNegateNode>(rootNode)) {
auto& childNode = downcast<CSSCalcNegateNode>(rootNode.get()).child();
// If root’s child is a numeric value, return an equivalent numeric value, but with the value negated (0 - value).
if (is<CSSCalcPrimitiveValueNode>(childNode) && downcast<CSSCalcPrimitiveValueNode>(childNode).isNumericValue()) {
downcast<CSSCalcPrimitiveValueNode>(childNode).negate();
return childNode;
}
// If root’s child is a Negate node, return the child’s child.
if (is<CSSCalcNegateNode>(childNode))
return downcast<CSSCalcNegateNode>(childNode).child();
return WTFMove(rootNode);
}
if (is<CSSCalcInvertNode>(rootNode)) {
auto& childNode = downcast<CSSCalcInvertNode>(rootNode.get()).child();
// If root’s child is a number (not a percentage or dimension) return the reciprocal of the child’s value.
if (is<CSSCalcPrimitiveValueNode>(childNode) && downcast<CSSCalcPrimitiveValueNode>(childNode).isNumericValue()) {
downcast<CSSCalcPrimitiveValueNode>(childNode).invert();
return childNode;
}
// If root’s child is an Invert node, return the child’s child.
if (is<CSSCalcInvertNode>(childNode))
return downcast<CSSCalcInvertNode>(childNode).child();
return WTFMove(rootNode);
}
return WTFMove(rootNode);
}
CSSUnitType CSSCalcOperationNode::primitiveType() const
{
auto unitCategory = category();
switch (unitCategory) {
case CalculationCategory::Number:
return CSSUnitType::CSS_NUMBER;
case CalculationCategory::Percent: {
if (m_children.isEmpty())
return CSSUnitType::CSS_UNKNOWN;
if (m_children.size() == 2) {
if (m_children[0]->category() == CalculationCategory::Number)
return m_children[1]->primitiveType();
if (m_children[1]->category() == CalculationCategory::Number)
return m_children[0]->primitiveType();
}
CSSUnitType firstType = m_children[0]->primitiveType();
for (auto& child : m_children) {
if (firstType != child->primitiveType())
return CSSUnitType::CSS_UNKNOWN;
}
return firstType;
}
case CalculationCategory::Length:
case CalculationCategory::Angle:
case CalculationCategory::Time:
case CalculationCategory::Frequency:
case CalculationCategory::Resolution:
if (m_children.size() == 1 && !isInverseTrigNode())
return m_children.first()->primitiveType();
return canonicalUnitTypeForCalculationCategory(unitCategory);
case CalculationCategory::PercentLength:
case CalculationCategory::PercentNumber:
case CalculationCategory::Other:
return CSSUnitType::CSS_UNKNOWN;
}
ASSERT_NOT_REACHED();
return CSSUnitType::CSS_UNKNOWN;
}
std::unique_ptr<CalcExpressionNode> CSSCalcOperationNode::createCalcExpression(const CSSToLengthConversionData& conversionData) const
{
Vector<std::unique_ptr<CalcExpressionNode>> nodes;
nodes.reserveInitialCapacity(m_children.size());
for (auto& child : m_children) {
auto node = child->createCalcExpression(conversionData);
if (!node)
return nullptr;
nodes.uncheckedAppend(WTFMove(node));
}
// Reverse the operation we did when creating this node, recovering a suitable destination category for otherwise-ambiguous min/max/clamp nodes.
// Note that this category is really only good enough for that purpose and is not accurate for other node types; we could use a boolean instead.
auto destinationCategory = CalculationCategory::Other;
if (category() == CalculationCategory::PercentLength)
destinationCategory = CalculationCategory::Length;
else if (category() == CalculationCategory::PercentNumber)
destinationCategory = CalculationCategory::Number;
return makeUnique<CalcExpressionOperation>(WTFMove(nodes), m_operator, destinationCategory);
}
double CSSCalcOperationNode::doubleValue(CSSUnitType unitType) const
{
bool allowNumbers = calcOperator() == CalcOperator::Multiply;
return evaluate(m_children.map([&] (auto& child) {
CSSUnitType childType = unitType;
if (allowNumbers && unitType != CSSUnitType::CSS_NUMBER && child->primitiveType() == CSSUnitType::CSS_NUMBER)
childType = CSSUnitType::CSS_NUMBER;
if (isTrigNode() && unitType != CSSUnitType::CSS_NUMBER)
childType = CSSUnitType::CSS_RAD;
if (isInverseTrigNode())
childType = CSSUnitType::CSS_NUMBER;
if (isAtan2Node() || isAbsOrSignNode())
childType = child->primitiveType();
return child->doubleValue(childType);
}));
}
double CSSCalcOperationNode::computeLengthPx(const CSSToLengthConversionData& conversionData) const
{
return evaluate(m_children.map([&] (auto& child) {
return child->computeLengthPx(conversionData);
}));
}
void CSSCalcOperationNode::collectComputedStyleDependencies(ComputedStyleDependencies& dependencies) const
{
for (auto& child : m_children)
child->collectComputedStyleDependencies(dependencies);
}
bool CSSCalcOperationNode::convertingToLengthRequiresNonNullStyle(int lengthConversion) const
{
return WTF::anyOf(m_children, [lengthConversion] (auto& child) {
return child->convertingToLengthRequiresNonNullStyle(lengthConversion);
});
}
void CSSCalcOperationNode::buildCSSText(const CSSCalcExpressionNode& node, StringBuilder& builder)
{
auto shouldOutputEnclosingCalc = [](const CSSCalcExpressionNode& rootNode) {
if (is<CSSCalcOperationNode>(rootNode)) {
auto& operationNode = downcast<CSSCalcOperationNode>(rootNode);
return operationNode.isCalcSumNode() || operationNode.isCalcProductNode();
}
return !is<CSSCalcPrimitiveValueNode>(rootNode);
};
bool outputCalc = shouldOutputEnclosingCalc(node);
if (outputCalc)
builder.append("calc(");
buildCSSTextRecursive(node, builder, GroupingParens::Omit);
if (outputCalc)
builder.append(')');
}
static const char* functionPrefixForOperator(CalcOperator op)
{
switch (op) {
case CalcOperator::Add:
case CalcOperator::Subtract:
case CalcOperator::Multiply:
case CalcOperator::Divide:
ASSERT_NOT_REACHED();
return "";
case CalcOperator::Sin: return "sin(";
case CalcOperator::Cos: return "cos(";
case CalcOperator::Tan: return "tan(";
case CalcOperator::Min: return "min(";
case CalcOperator::Max: return "max(";
case CalcOperator::Clamp: return "clamp(";
case CalcOperator::Exp: return "exp(";
case CalcOperator::Log: return "log(";
case CalcOperator::Asin: return "asin(";
case CalcOperator::Acos: return "acos(";
case CalcOperator::Atan: return "atan(";
case CalcOperator::Atan2: return "atan2(";
case CalcOperator::Abs: return "abs(";
case CalcOperator::Sign: return "sign(";
case CalcOperator::Mod: return "mod(";
case CalcOperator::Rem: return "rem(";
case CalcOperator::Round: return "round(";
case CalcOperator::Up: return "round(up, ";
case CalcOperator::Down: return "round(down, ";
case CalcOperator::Nearest: return "round(nearest, ";
case CalcOperator::ToZero: return "round(to-zero, ";
case CalcOperator::Pow: return "pow(";
case CalcOperator::Sqrt: return "sqrt(";
case CalcOperator::Hypot: return "hypot(";
}
return "";
}
// <https://drafts.csswg.org/css-values-4/#serialize-a-calculation-tree>
void CSSCalcOperationNode::buildCSSTextRecursive(const CSSCalcExpressionNode& node, StringBuilder& builder, GroupingParens parens)
{
// If root is a numeric value, or a non-math function, serialize root per the normal rules for it and return the result.
if (is<CSSCalcPrimitiveValueNode>(node)) {
auto& valueNode = downcast<CSSCalcPrimitiveValueNode>(node);
builder.append(valueNode.customCSSText());
return;
}
if (is<CSSCalcOperationNode>(node)) {
auto& operationNode = downcast<CSSCalcOperationNode>(node);
if (operationNode.isCalcSumNode()) {
// If root is a Sum node, let s be a string initially containing "(".
if (parens == GroupingParens::Include)
builder.append('(');
auto children = operationNode.children();
sortChildren(children);
ASSERT(children.size());
// Serialize root’s first child, and append it to s.
buildCSSTextRecursive(children.first(), builder);
// For each child of root beyond the first:
// If child is a Negate node, append " - " to s, then serialize the Negate’s child and append the result to s.
// If child is a negative numeric value, append " - " to s, then serialize the negation of child as normal and append the result to s.
// Otherwise, append " + " to s, then serialize child and append the result to s.
for (unsigned i = 1; i < children.size(); ++i) {
auto& child = children[i];
if (is<CSSCalcNegateNode>(child)) {
builder.append(" - ");
buildCSSTextRecursive(downcast<CSSCalcNegateNode>(child.get()).child(), builder);
continue;
}
if (is<CSSCalcPrimitiveValueNode>(child)) {
auto& primitiveValueNode = downcast<CSSCalcPrimitiveValueNode>(child.get());
if (primitiveValueNode.isNegative()) {
builder.append(" - ");
// Serialize the negation of child.
auto unitType = primitiveValueNode.value().primitiveType();
builder.append(0 - primitiveValueNode.value().doubleValue(), CSSPrimitiveValue::unitTypeString(unitType));
continue;
}
}
builder.append(" + ");
buildCSSTextRecursive(child, builder);
}
if (parens == GroupingParens::Include)
builder.append(')');
return;
}
if (operationNode.isCalcProductNode()) {
// If root is a Product node, let s be a string initially containing "(".
if (parens == GroupingParens::Include)
builder.append('(');
auto children = operationNode.children();
sortChildren(children);
ASSERT(children.size());
// Serialize root’s first child, and append it to s.
buildCSSTextRecursive(children.first(), builder);
// For each child of root beyond the first:
// If child is an Invert node, append " / " to s, then serialize the Invert’s child and append the result to s.
// Otherwise, append " * " to s, then serialize child and append the result to s.
for (unsigned i = 1; i < children.size(); ++i) {
auto& child = children[i];
if (is<CSSCalcInvertNode>(child)) {
builder.append(" / ");
buildCSSTextRecursive(downcast<CSSCalcInvertNode>(child.get()).child(), builder);
continue;
}
builder.append(" * ");
buildCSSTextRecursive(child, builder);
}
if (parens == GroupingParens::Include)
builder.append(')');
return;
}
// If root is anything but a Sum, Negate, Product, or Invert node, serialize a math function for the
// function corresponding to the node type, treating the node’s children as the function’s
// comma-separated calculation arguments, and return the result.
builder.append(functionPrefixForOperator(operationNode.calcOperator()));
auto& children = operationNode.children();
ASSERT(children.size());
buildCSSTextRecursive(children.first(), builder, GroupingParens::Omit);
for (unsigned i = 1; i < children.size(); ++i) {
builder.append(", ");
buildCSSTextRecursive(children[i], builder, GroupingParens::Omit);
}
builder.append(')');
return;
}
if (is<CSSCalcNegateNode>(node)) {
auto& negateNode = downcast<CSSCalcNegateNode>(node);
// If root is a Negate node, let s be a string initially containing "(-1 * ".
builder.append("-1 *");
buildCSSTextRecursive(negateNode.child(), builder);
return;
}
if (is<CSSCalcInvertNode>(node)) {
auto& invertNode = downcast<CSSCalcInvertNode>(node);
// If root is an Invert node, let s be a string initially containing "(1 / ".
builder.append("1 / ");
buildCSSTextRecursive(invertNode.child(), builder);
return;
}
}
void CSSCalcOperationNode::dump(TextStream& ts) const
{
ts << "calc operation " << m_operator << " (category: " << category() << ", type " << primitiveType() << ")";
TextStream::GroupScope scope(ts);
ts << m_children.size() << " children";
for (auto& child : m_children)
ts.dumpProperty("node", child);
}
bool CSSCalcOperationNode::equals(const CSSCalcExpressionNode& exp) const
{
if (type() != exp.type())
return false;
const CSSCalcOperationNode& other = static_cast<const CSSCalcOperationNode&>(exp);
if (m_children.size() != other.m_children.size() || m_operator != other.m_operator)
return false;
for (size_t i = 0; i < m_children.size(); ++i) {
if (!compareCSSValue(m_children[i], other.m_children[i]))
return false;
}
return true;
}
double CSSCalcOperationNode::evaluateOperator(CalcOperator calcOperator, const Vector<double>& children)
{
return evaluateCalcExpression(calcOperator, children, [](double child) {
return child;
});
}
}
|