1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
/*
* Copyright (C) 2014, 2016 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "IDBSerialization.h"
#include "IDBKeyData.h"
#include "IDBKeyPath.h"
#include "KeyedCoding.h"
#if USE(GLIB)
#include <glib.h>
#include <wtf/glib/GRefPtr.h>
#endif
namespace WebCore {
enum class KeyPathType { Null, String, Array };
RefPtr<SharedBuffer> serializeIDBKeyPath(const std::optional<IDBKeyPath>& keyPath)
{
auto encoder = KeyedEncoder::encoder();
if (keyPath) {
auto visitor = WTF::makeVisitor([&](const String& string) {
encoder->encodeEnum("type"_s, KeyPathType::String);
encoder->encodeString("string"_s, string);
}, [&](const Vector<String>& vector) {
encoder->encodeEnum("type"_s, KeyPathType::Array);
encoder->encodeObjects("array"_s, vector.begin(), vector.end(), [](WebCore::KeyedEncoder& encoder, const String& string) {
encoder.encodeString("string"_s, string);
});
});
std::visit(visitor, keyPath.value());
} else
encoder->encodeEnum("type"_s, KeyPathType::Null);
return encoder->finishEncoding();
}
bool deserializeIDBKeyPath(const uint8_t* data, size_t size, std::optional<IDBKeyPath>& result)
{
if (!data || !size)
return false;
auto decoder = KeyedDecoder::decoder(data, size);
KeyPathType type;
bool succeeded = decoder->decodeEnum("type"_s, type, [](KeyPathType value) {
return value == KeyPathType::Null || value == KeyPathType::String || value == KeyPathType::Array;
});
if (!succeeded)
return false;
switch (type) {
case KeyPathType::Null:
break;
case KeyPathType::String: {
String string;
if (!decoder->decodeString("string"_s, string))
return false;
result = IDBKeyPath(WTFMove(string));
break;
}
case KeyPathType::Array: {
Vector<String> vector;
succeeded = decoder->decodeObjects("array"_s, vector, [](KeyedDecoder& decoder, String& result) {
return decoder.decodeString("string"_s, result);
});
if (!succeeded)
return false;
result = IDBKeyPath(WTFMove(vector));
break;
}
}
return true;
}
static bool isLegacySerializedIDBKeyData(const uint8_t* data, size_t size)
{
#if USE(CF)
UNUSED_PARAM(size);
// This is the magic character that begins serialized PropertyLists, and tells us whether
// the key we're looking at is an old-style key.
static const uint8_t legacySerializedKeyVersion = 'b';
if (data[0] == legacySerializedKeyVersion)
return true;
#elif USE(GLIB)
// KeyedEncoderGLib uses a GVariant dictionary, so check if the given data is a valid GVariant dictionary.
GRefPtr<GBytes> bytes = adoptGRef(g_bytes_new(data, size));
GRefPtr<GVariant> variant = g_variant_new_from_bytes(G_VARIANT_TYPE("a{sv}"), bytes.get(), FALSE);
return g_variant_is_normal_form(variant.get());
#else
UNUSED_PARAM(data);
UNUSED_PARAM(size);
#endif
return false;
}
/*
The IDBKeyData serialization format is as follows:
[1 byte version header][Key Buffer]
The Key Buffer serialization format is as follows:
[1 byte key type][Type specific data]
Type specific serialization formats are as follows for each of the types:
Min:
[0 bytes]
Number:
[8 bytes representing a double encoded in little endian]
Date:
[8 bytes representing a double encoded in little endian]
String:
[4 bytes representing string "length" in little endian]["length" number of 2-byte pairs representing ECMAScript 16-bit code units]
Binary:
[8 bytes representing the "size" of the binary blob]["size" bytes]
Array:
[8 bytes representing the "length" of the key array]["length" individual Key Buffer entries]
Max:
[0 bytes]
*/
static const uint8_t SIDBKeyVersion = 0x00;
enum class SIDBKeyType : uint8_t {
Min = 0x00,
Number = 0x20,
Date = 0x40,
String = 0x60,
Binary = 0x80,
Array = 0xA0,
Max = 0xFF,
};
static SIDBKeyType serializedTypeForKeyType(IndexedDB::KeyType type)
{
switch (type) {
case IndexedDB::KeyType::Min:
return SIDBKeyType::Min;
case IndexedDB::KeyType::Number:
return SIDBKeyType::Number;
case IndexedDB::KeyType::Date:
return SIDBKeyType::Date;
case IndexedDB::KeyType::String:
return SIDBKeyType::String;
case IndexedDB::KeyType::Binary:
return SIDBKeyType::Binary;
case IndexedDB::KeyType::Array:
return SIDBKeyType::Array;
case IndexedDB::KeyType::Max:
return SIDBKeyType::Max;
case IndexedDB::KeyType::Invalid:
RELEASE_ASSERT_NOT_REACHED();
};
RELEASE_ASSERT_NOT_REACHED();
}
#if CPU(BIG_ENDIAN) || CPU(MIDDLE_ENDIAN) || CPU(NEEDS_ALIGNED_ACCESS)
template <typename T> static void writeLittleEndian(Vector<uint8_t>& buffer, T value)
{
for (unsigned i = 0; i < sizeof(T); i++) {
buffer.append(value & 0xFF);
value >>= 8;
}
}
template <typename T> static bool readLittleEndian(const uint8_t*& ptr, const uint8_t* end, T& value)
{
if (ptr > end - sizeof(value))
return false;
value = 0;
for (size_t i = 0; i < sizeof(T); i++)
value += ((T)*ptr++) << (i * 8);
return true;
}
#else
template <typename T> static void writeLittleEndian(Vector<uint8_t>& buffer, T value)
{
buffer.append(reinterpret_cast<uint8_t*>(&value), sizeof(value));
}
template <typename T> static bool readLittleEndian(const uint8_t*& ptr, const uint8_t* end, T& value)
{
if (ptr > end - sizeof(value))
return false;
value = *reinterpret_cast<const T*>(ptr);
ptr += sizeof(T);
return true;
}
#endif
static void writeDouble(Vector<uint8_t>& data, double d)
{
writeLittleEndian(data, *reinterpret_cast<uint64_t*>(&d));
}
static bool readDouble(const uint8_t*& data, const uint8_t* end, double& d)
{
return readLittleEndian(data, end, *reinterpret_cast<uint64_t*>(&d));
}
static void encodeKey(Vector<uint8_t>& data, const IDBKeyData& key)
{
SIDBKeyType type = serializedTypeForKeyType(key.type());
data.append(static_cast<uint8_t>(type));
switch (type) {
case SIDBKeyType::Number:
writeDouble(data, key.number());
break;
case SIDBKeyType::Date:
writeDouble(data, key.date());
break;
case SIDBKeyType::String: {
auto string = key.string();
uint32_t length = string.length();
writeLittleEndian(data, length);
for (size_t i = 0; i < length; ++i)
writeLittleEndian(data, string[i]);
break;
}
case SIDBKeyType::Binary: {
auto& buffer = key.binary();
uint64_t size = buffer.size();
writeLittleEndian(data, size);
auto* bufferData = buffer.data();
ASSERT(bufferData || !size);
if (bufferData)
data.append(bufferData->data(), bufferData->size());
break;
}
case SIDBKeyType::Array: {
auto& array = key.array();
uint64_t size = array.size();
writeLittleEndian(data, size);
for (auto& key : array)
encodeKey(data, key);
break;
}
case SIDBKeyType::Min:
case SIDBKeyType::Max:
break;
}
}
RefPtr<SharedBuffer> serializeIDBKeyData(const IDBKeyData& key)
{
Vector<uint8_t> data;
data.append(SIDBKeyVersion);
encodeKey(data, key);
return SharedBuffer::create(WTFMove(data));
}
static WARN_UNUSED_RETURN bool decodeKey(const uint8_t*& data, const uint8_t* end, IDBKeyData& result)
{
if (!data || data >= end)
return false;
SIDBKeyType type = static_cast<SIDBKeyType>(data++[0]);
switch (type) {
case SIDBKeyType::Min:
result = IDBKeyData::minimum();
return true;
case SIDBKeyType::Max:
result = IDBKeyData::maximum();
return true;
case SIDBKeyType::Number: {
double d;
if (!readDouble(data, end, d))
return false;
result.setNumberValue(d);
return true;
}
case SIDBKeyType::Date: {
double d;
if (!readDouble(data, end, d))
return false;
result.setDateValue(d);
return true;
}
case SIDBKeyType::String: {
uint32_t length;
if (!readLittleEndian(data, end, length))
return false;
if (static_cast<uint64_t>(end - data) < length * 2)
return false;
Vector<UChar> buffer;
buffer.reserveInitialCapacity(length);
for (size_t i = 0; i < length; i++) {
uint16_t ch;
if (!readLittleEndian(data, end, ch))
return false;
buffer.uncheckedAppend(ch);
}
result.setStringValue(String::adopt(WTFMove(buffer)));
return true;
}
case SIDBKeyType::Binary: {
uint64_t size64;
if (!readLittleEndian(data, end, size64))
return false;
if (static_cast<uint64_t>(end - data) < size64)
return false;
if (size64 > std::numeric_limits<size_t>::max())
return false;
size_t size = static_cast<size_t>(size64);
Vector<uint8_t> dataVector;
dataVector.append(data, size);
data += size;
result.setBinaryValue(ThreadSafeDataBuffer::create(WTFMove(dataVector)));
return true;
}
case SIDBKeyType::Array: {
uint64_t size64;
if (!readLittleEndian(data, end, size64))
return false;
if (size64 > std::numeric_limits<size_t>::max())
return false;
size_t size = static_cast<size_t>(size64);
Vector<IDBKeyData> array;
array.reserveInitialCapacity(size);
for (size_t i = 0; i < size; ++i) {
IDBKeyData keyData;
if (!decodeKey(data, end, keyData))
return false;
ASSERT(keyData.isValid());
array.uncheckedAppend(WTFMove(keyData));
}
result.setArrayValue(array);
return true;
}
default:
LOG_ERROR("decodeKey encountered unexpected type: %i", (int)type);
return false;
}
}
bool deserializeIDBKeyData(const uint8_t* data, size_t size, IDBKeyData& result)
{
if (!data || !size)
return false;
if (isLegacySerializedIDBKeyData(data, size)) {
auto decoder = KeyedDecoder::decoder(data, size);
return IDBKeyData::decode(*decoder, result);
}
// Verify this is a SerializedIDBKey version we understand.
const uint8_t* current = data;
const uint8_t* end = data + size;
if (current++[0] != SIDBKeyVersion)
return false;
if (decodeKey(current, end, result)) {
// Even if we successfully decoded a key, the deserialize is only successful
// if we actually consumed all input data.
return current == end;
}
return false;
}
} // namespace WebCore
|