1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
|
/*
* Copyright (C) 2011 Google Inc. All rights reserved.
* Copyright (C) 2022 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "AudioParamTimeline.h"
#include "AudioUtilities.h"
#include "FloatConversion.h"
#include "VectorMath.h"
#include <algorithm>
#include <wtf/MathExtras.h>
namespace WebCore {
static void fillWithValue(float* values, float value, unsigned endFrame, unsigned& writeIndex)
{
if (writeIndex < endFrame) {
std::fill_n(values + writeIndex, endFrame - writeIndex, value);
writeIndex = endFrame;
}
}
// Test that for a SetTarget event, the current value is close enough to the target value that
// we can consider the event to have converged to the target.
static bool hasSetTargetConverged(float value, float target, Seconds currentTime, Seconds startTime, double timeConstant)
{
// For a SetTarget event, we want the event to terminate eventually so that we can stop using
// the timeline to compute the values.
constexpr float timeConstantsToConverge = 10;
constexpr float setTargetThreshold = 4.539992976248485e-05;
// Converged if enough time constants (|timeConstantsToConverge|) have passed since the start
// of the event.
if (currentTime.value() > startTime.value() + timeConstantsToConverge * timeConstant)
return true;
// If |target| is 0, converged if |value| is less than |setTargetThreshold|.
if (!target && std::abs(value) < setTargetThreshold)
return true;
// If |target| is not zero, converged if relative difference between |value|
// and |target| is small. That is |target - value| / |target| < |setTargetThreshold|.
if (target && std::abs(target - value) < setTargetThreshold * std::abs(value))
return true;
return false;
}
ExceptionOr<void> AudioParamTimeline::setValueAtTime(float value, Seconds time)
{
Locker locker { m_eventsLock };
return insertEvent(ParamEvent::createSetValueEvent(value, time));
}
ExceptionOr<void> AudioParamTimeline::linearRampToValueAtTime(float targetValue, Seconds endTime, float currentValue, Seconds currentTime)
{
Locker locker { m_eventsLock };
// Linear ramp events need a preceding event so that they have an initial value.
if (m_events.isEmpty())
insertEvent(ParamEvent::createSetValueEvent(currentValue, currentTime));
return insertEvent(ParamEvent::createLinearRampEvent(targetValue, endTime));
}
ExceptionOr<void> AudioParamTimeline::exponentialRampToValueAtTime(float targetValue, Seconds endTime, float currentValue, Seconds currentTime)
{
Locker locker { m_eventsLock };
// Exponential ramp events need a preceding event so that they have an initial value.
if (m_events.isEmpty())
insertEvent(ParamEvent::createSetValueEvent(currentValue, currentTime));
return insertEvent(ParamEvent::createExponentialRampEvent(targetValue, endTime));
}
ExceptionOr<void> AudioParamTimeline::setTargetAtTime(float target, Seconds time, float timeConstant)
{
Locker locker { m_eventsLock };
// If timeConstant is 0, we instantly jump to the target value, so insert a SetValueEvent instead of SetTargetEvent.
if (!timeConstant)
return insertEvent(ParamEvent::createSetValueEvent(target, time));
return insertEvent(ParamEvent::createSetTargetEvent(target, time, timeConstant));
}
ExceptionOr<void> AudioParamTimeline::setValueCurveAtTime(Vector<float>&& curve, Seconds time, Seconds duration)
{
Locker locker { m_eventsLock };
float curveEndValue = curve.last();
auto result = insertEvent(ParamEvent::createSetValueCurveEvent(WTFMove(curve), time, duration));
if (result.hasException())
return result.releaseException();
// The specification says an implicit call to setValueAtTime() is made at time T0+TD with value V[N-1]
// so that following automations will start from the end of the setValueCurveAtTime() event.
return insertEvent(ParamEvent::createSetValueEvent(curveEndValue, time + duration));
}
static bool isValidNumber(float x)
{
return !std::isnan(x) && !std::isinf(x);
}
static bool isValidNumber(Seconds s)
{
return !std::isnan(s.value()) && !std::isinf(s.value());
}
ExceptionOr<void> AudioParamTimeline::insertEvent(ParamEvent&& event)
{
// Sanity check the event. Be super careful we're not getting infected with NaN or Inf.
bool isValid = event.type() < ParamEvent::LastType
&& isValidNumber(event.value())
&& isValidNumber(event.time())
&& isValidNumber(event.timeConstant())
&& isValidNumber(event.duration())
&& event.duration() >= 0_s;
if (!isValid)
return { };
ASSERT(m_eventsLock.isLocked());
unsigned i = 0;
auto insertTime = event.time();
for (auto& paramEvent : m_events) {
if (event.type() == ParamEvent::SetValueCurve) {
if (paramEvent.type() != ParamEvent::CancelValues) {
// If this event is a SetValueCurve, make sure it doesn't overlap any existing event.
// It's ok if the SetValueCurve starts at the same time as the end of some other duration.
auto endTime = event.time() + event.duration();
if (paramEvent.type() == ParamEvent::SetValueCurve) {
auto paramEventEndTime = paramEvent.time() + paramEvent.duration();
if ((paramEvent.time() >= event.time() && paramEvent.time() < endTime)
|| (paramEventEndTime > event.time() && paramEventEndTime < endTime)
|| (event.time() >= paramEvent.time() && event.time() < paramEventEndTime)
|| (endTime >= paramEvent.time() && endTime < paramEventEndTime)) {
return Exception { NotSupportedError, "Events are overlapping"_s };
}
} else if (paramEvent.time() > event.time() && paramEvent.time() < endTime)
return Exception { NotSupportedError, "Events are overlapping"_s };
}
} else if (paramEvent.type() == ParamEvent::SetValueCurve) {
// Otherwise, make sure this event doesn't overlap any existing SetValueCurve event.
auto parentEventEndTime = paramEvent.time() + paramEvent.duration();
if (event.time() >= paramEvent.time() && event.time() < parentEventEndTime)
return Exception { NotSupportedError, "Events are overlapping"_s };
}
if (paramEvent.time() > insertTime)
break;
++i;
}
m_events.insert(i, WTFMove(event));
return { };
}
void AudioParamTimeline::cancelScheduledValues(Seconds cancelTime)
{
Locker locker { m_eventsLock };
// Remove all events whose start time is greater than or equal to the cancel time.
// Also handle the special case where the cancel time lies in the middle of a
// SetValueCurve event.
//
// This critically depends on the fact that no event can be scheduled in the middle
// of the curve or at the same start time. Then removing the SetValueCurve doesn't
// remove any events that shouldn't have been.
auto isAfter = [](const ParamEvent& event, Seconds cancelTime) {
auto eventTime = event.time();
if (eventTime >= cancelTime)
return true;
return event.type() == ParamEvent::SetValueCurve
&& eventTime <= cancelTime
&& (eventTime + event.duration() > cancelTime);
};
// Remove all events starting at cancelTime.
for (unsigned i = 0; i < m_events.size(); ++i) {
if (isAfter(m_events[i], cancelTime)) {
m_events.remove(i, m_events.size() - i);
break;
}
}
}
ExceptionOr<void> AudioParamTimeline::cancelAndHoldAtTime(Seconds cancelTime)
{
Locker locker { m_eventsLock };
// Find the first event at or just past cancelTime.
size_t i = m_events.findIf([&](auto& event) {
return event.time() > cancelTime;
});
i = (i == notFound) ? m_events.size() : i;
// The event that is being cancelled. This is the event just past cancelTime, if any.
size_t cancelledEventIndex = i;
// If the event just before cancelTime is a SetTarget or SetValueCurve event, we need
// to handle that event specially instead of the event after.
if (i > 0 && ((m_events[i - 1].type() == ParamEvent::SetTarget) || (m_events[i - 1].type() == ParamEvent::SetValueCurve)))
cancelledEventIndex = i - 1;
else if (i >= m_events.size()) {
// If there were no events occurring after |cancelTime| (and the
// previous event is not SetTarget or SetValueCurve, we're done.
return { };
}
// cancelledEvent is the event that is being cancelled.
auto& cancelledEvent = m_events[cancelledEventIndex];
auto eventType = cancelledEvent.type();
// New event to be inserted, if any, and a SetValueEvent if needed.
std::optional<ParamEvent> newEvent;
std::optional<ParamEvent> newSetValueEvent;
switch (eventType) {
case ParamEvent::LinearRampToValue:
case ParamEvent::ExponentialRampToValue: {
// For these events we need to remember the parameters of the event
// for a CancelValues event so that we can properly cancel the event
// and hold the value.
auto savedEvent = ParamEvent::SavedEvent { eventType, cancelledEvent.value(), cancelledEvent.time() };
newEvent = ParamEvent::createCancelValuesEvent(cancelTime, WTFMove(savedEvent));
break;
}
case ParamEvent::SetTarget: {
if (cancelledEvent.time() < cancelTime) {
// Don't want to remove the SetTarget event if it started before the
// cancel time, so bump the index. But we do want to insert a
// cancelEvent so that we stop this automation and hold the value when
// we get there.
++cancelledEventIndex;
newEvent = ParamEvent::createCancelValuesEvent(cancelTime, std::nullopt);
}
break;
}
case ParamEvent::SetValueCurve: {
// If the setValueCurve event started strictly before the cancel time,
// there might be something to do....
if (cancelledEvent.time() < cancelTime) {
if (cancelTime > cancelledEvent.time() + cancelledEvent.duration()) {
// If the cancellation time is past the end of the curve there's
// nothing to do except remove the following events.
++cancelledEventIndex;
} else {
// Cancellation time is in the middle of the curve. Therefore,
// create a new SetValueCurve event with the appropriate new
// parameters to cancel this event properly. Since it's illegal
// to insert any event within a SetValueCurve event, we can
// compute the new end value now instead of doing when running
// the timeline.
auto newDuration = cancelTime - cancelledEvent.time();
float endValue = valueCurveAtTime(cancelTime, cancelledEvent.time(), cancelledEvent.duration(), cancelledEvent.curve().data(), cancelledEvent.curve().size());
// Replace the existing SetValueCurve with this new one that is identical except for the duration.
newEvent = ParamEvent { eventType, cancelledEvent.value(), cancelledEvent.time(), cancelledEvent.timeConstant(), newDuration, Vector<float> { cancelledEvent.curve() }, cancelledEvent.curvePointsPerSecond(), endValue, std::nullopt };
newSetValueEvent = ParamEvent::createSetValueEvent(endValue, cancelledEvent.time() + newDuration);
}
}
break;
}
case ParamEvent::SetValue:
case ParamEvent::CancelValues:
// Nothing needs to be done for a SetValue or CancelValues event.
break;
case ParamEvent::LastType:
ASSERT_NOT_REACHED();
break;
}
// Now remove all the following events from the timeline.
if (cancelledEventIndex < m_events.size())
removeCancelledEvents(cancelledEventIndex);
// Insert the new event, if any.
if (newEvent) {
auto result = insertEvent(WTFMove(*newEvent));
if (result.hasException())
return result.releaseException();
if (newSetValueEvent) {
insertEvent(WTFMove(*newSetValueEvent));
if (result.hasException())
return result.releaseException();
}
}
return { };
}
void AudioParamTimeline::removeCancelledEvents(size_t firstEventToRemove)
{
m_events.remove(firstEventToRemove, m_events.size() - firstEventToRemove);
}
void AudioParamTimeline::removeOldEvents(size_t eventCount)
{
ASSERT(eventCount <= m_events.size());
if (m_events.isEmpty())
return;
// Always leave at least one event in the list.
m_events.remove(0, std::min(eventCount, m_events.size() - 1));
}
std::optional<float> AudioParamTimeline::valueForContextTime(BaseAudioContext& context, float defaultValue, float minValue, float maxValue)
{
{
if (!m_eventsLock.tryLock())
return std::nullopt;
Locker locker { AdoptLock, m_eventsLock };
if (!m_events.size() || Seconds { context.currentTime() } < m_events[0].time())
return std::nullopt;
}
// Ask for just a single value.
float value;
double sampleRate = context.sampleRate();
size_t startFrame = context.currentSampleFrame();
size_t endFrame = startFrame + 1;
double controlRate = sampleRate / AudioUtilities::renderQuantumSize; // one parameter change per render quantum
value = valuesForFrameRange(startFrame, endFrame, defaultValue, minValue, maxValue, &value, 1, sampleRate, controlRate);
return value;
}
float AudioParamTimeline::valuesForFrameRange(size_t startFrame, size_t endFrame, float defaultValue, float minValue, float maxValue, float* values, unsigned numberOfValues, double sampleRate, double controlRate)
{
// We can't contend the lock in the realtime audio thread.
if (!m_eventsLock.tryLock()) {
std::fill_n(values, numberOfValues, defaultValue);
return defaultValue;
}
Locker locker { AdoptLock, m_eventsLock };
float value = valuesForFrameRangeImpl(startFrame, endFrame, defaultValue, values, numberOfValues, sampleRate, controlRate);
// Clamp values based on range allowed by AudioParam's min and max values.
VectorMath::clamp(values, minValue, maxValue, values, numberOfValues);
return value;
}
float AudioParamTimeline::valuesForFrameRangeImpl(size_t startFrame, size_t endFrame, float defaultValue, float* values, unsigned numberOfValues, double sampleRate, double controlRate)
{
ASSERT(values);
if (!values)
return defaultValue;
double samplingPeriod = 1. / sampleRate;
// Return default value if there are no events matching the desired time range.
if (!m_events.size() || endFrame * samplingPeriod <= m_events[0].time().value()) {
std::fill_n(values, numberOfValues, defaultValue);
return defaultValue;
}
// Maintain a running time and index for writing the values buffer.
size_t currentFrame = startFrame;
unsigned writeIndex = 0;
// If first event is after startTime then fill initial part of values buffer with defaultValue
// until we reach the first event time.
auto firstEventTime = m_events[0].time();
if (firstEventTime.value() > startFrame * samplingPeriod) {
size_t fillToEndFrame = endFrame;
double firstEventFrame = ceil(firstEventTime.value() * sampleRate);
if (endFrame > firstEventFrame)
fillToEndFrame = firstEventFrame;
ASSERT(fillToEndFrame >= startFrame);
unsigned fillToFrame = static_cast<unsigned>(fillToEndFrame - startFrame);
fillToFrame = std::min(fillToFrame, numberOfValues);
fillWithValue(values, defaultValue, fillToFrame, writeIndex);
currentFrame += fillToFrame;
}
float value = defaultValue;
size_t numberOfSkippedEvents = 0;
// Go through each event and render the value buffer where the times overlap,
// stopping when we've rendered all the requested values.
// FIXME: could try to optimize by avoiding having to iterate starting from the very first event
// and keeping track of a "current" event index.
int n = m_events.size();
for (int i = 0; i < n && writeIndex < numberOfValues; ++i) {
auto* event = &m_events[i];
auto* nextEvent = i < n - 1 ? &m_events[i + 1] : nullptr;
// Wait until we get a more recent event.
if (!isEventCurrent(*event, nextEvent, currentFrame, sampleRate)) {
++numberOfSkippedEvents;
continue;
}
auto nextEventType = nextEvent ? static_cast<ParamEvent::Type>(nextEvent->type()) : ParamEvent::LastType /* unknown */;
processSetTargetFollowedByRamp(i, event, nextEventType, currentFrame, sampleRate, controlRate, value);
float value1 = event->value();
auto time1 = event->time();
float value2 = nextEvent ? nextEvent->value() : value1;
auto time2 = nextEvent ? nextEvent->time() : Seconds { endFrame * samplingPeriod + 1 };
ASSERT(time2 >= time1);
handleCancelValues(*event, nextEvent, value2, time2, nextEventType);
size_t fillToEndFrame = endFrame;
if (endFrame > time2.value() * sampleRate)
fillToEndFrame = static_cast<size_t>(ceil(time2.value() * sampleRate));
ASSERT(fillToEndFrame >= startFrame);
unsigned fillToFrame = static_cast<unsigned>(fillToEndFrame - startFrame);
fillToFrame = std::min(fillToFrame, numberOfValues);
const AutomationState currentState = {
numberOfValues,
startFrame,
endFrame,
sampleRate,
controlRate,
samplingPeriod,
fillToFrame,
fillToEndFrame,
value1,
time1,
value2,
time2,
event,
i,
};
// First handle linear and exponential ramps which require looking ahead to the next event.
if (nextEventType == ParamEvent::LinearRampToValue)
processLinearRamp(currentState, values, currentFrame, value, writeIndex);
else if (nextEventType == ParamEvent::ExponentialRampToValue)
processExponentialRamp(currentState, values, currentFrame, value, writeIndex);
else {
// Handle event types not requiring looking ahead to the next event.
switch (event->type()) {
case ParamEvent::SetValue:
case ParamEvent::LinearRampToValue:
case ParamEvent::ExponentialRampToValue:
currentFrame = fillToEndFrame;
// Simply stay at a constant value.
value = event->value();
fillWithValue(values, value, fillToFrame, writeIndex);
break;
case ParamEvent::CancelValues:
processCancelValues(currentState, values, currentFrame, value, writeIndex);
break;
case ParamEvent::SetTarget:
processSetTarget(currentState, values, currentFrame, value, writeIndex);
break;
case ParamEvent::SetValueCurve:
processSetValueCurve(currentState, values, currentFrame, value, writeIndex);
break;
case ParamEvent::LastType:
ASSERT_NOT_REACHED();
break;
}
}
}
// Drop outdated events that we skipped so we don't have to go through them again in the future.
if (numberOfSkippedEvents > 0)
removeOldEvents(numberOfSkippedEvents);
// If there's any time left after processing the last event then just propagate the last value
// to the end of the values buffer.
fillWithValue(values, value, numberOfValues, writeIndex);
return value;
}
void AudioParamTimeline::processLinearRamp(const AutomationState& currentState, float* values, size_t& currentFrame, float& value, unsigned& writeIndex)
{
auto deltaTime = currentState.time2 - currentState.time1;
float valueDelta = currentState.value2 - currentState.value1;
// Since deltaTime is a double, 1/deltaTime can easily overflow a float. Thus, if deltaTime
// is close enough to zero (less than float min), treat it as zero.
float k = deltaTime.value() <= std::numeric_limits<float>::min() ? 0 : 1 / deltaTime.value();
unsigned fillToFrameTrunc = writeIndex + ((currentState.fillToFrame - writeIndex) / 4) * 4;
if (fillToFrameTrunc > writeIndex) {
// Minimize in-loop operations. Calculate starting value and increment.
// Next step: value += inc.
// value = value1 + (currentFrame/sampleRate - time1) * k * (value2 - value1);
// inc = 4 / sampleRate * k * (value2 - value1);
// Resolve recursion by expanding constants to achieve a 4-step loop unrolling.
// value = value1 + ((currentFrame/sampleRate - time1) + i * sampleFrameTimeIncr) * k * (value2 - value1), i in 0..3
values[writeIndex] = 0;
values[writeIndex + 1] = 1;
values[writeIndex + 2] = 2;
values[writeIndex + 3] = 3;
VectorMath::multiplyByScalar(values + writeIndex, currentState.samplingPeriod, values + writeIndex, 4);
VectorMath::addScalar(values + writeIndex, currentFrame * currentState.samplingPeriod - currentState.time1.value(), values + writeIndex, 4);
VectorMath::multiplyByScalar(values + writeIndex, k * valueDelta, values + writeIndex, 4);
VectorMath::addScalar(values + writeIndex, currentState.value1, values + writeIndex, 4);
float inc = 4 * currentState.samplingPeriod * k * valueDelta;
// Truncate loop steps to multiple of 4.
unsigned fillToFrameTrunc = writeIndex + ((currentState.fillToFrame - writeIndex) / 4) * 4;
// Compute final frame.
currentFrame += fillToFrameTrunc - writeIndex;
// Process 4 loop steps.
writeIndex += 4;
for (; writeIndex < fillToFrameTrunc; writeIndex += 4)
VectorMath::addScalar(values + writeIndex - 4, inc, values + writeIndex, 4);
}
// Update |value| with the last value computed so that the .value attribute of the AudioParam gets
// the correct linear ramp value, in case the following loop doesn't execute.
if (writeIndex >= 1)
value = values[writeIndex - 1];
// Serially process remaining values.
for (; writeIndex < currentState.fillToFrame; ++writeIndex) {
float x = (currentFrame * currentState.samplingPeriod - currentState.time1.value()) * k;
value = currentState.value1 + valueDelta * x;
values[writeIndex] = value;
++currentFrame;
}
}
void AudioParamTimeline::processExponentialRamp(const AutomationState& currentState, float* values, size_t& currentFrame, float& value, unsigned& writeIndex)
{
if (!currentState.value1 || currentState.value1 * currentState.value2 < 0) {
// Per the specification:
// If value1 and value2 have opposite signs or if value1 is zero, then v(t) = value1 for T0 <= t < T1.
value = currentState.value1;
fillWithValue(values, value, currentState.fillToFrame, writeIndex);
return;
}
auto deltaTime = currentState.time2 - currentState.time1;
float numSampleFrames = deltaTime.value() * currentState.sampleRate;
// The value goes exponentially from value1 to value2 in a duration of deltaTime seconds (corresponding to numSampleFrames).
// Compute the per-sample multiplier.
float multiplier = powf(currentState.value2 / currentState.value1, 1 / numSampleFrames);
// Set the starting value of the exponential ramp.
value = currentState.value1 * pow(currentState.value2 / static_cast<double>(currentState.value1), (currentFrame * currentState.samplingPeriod - currentState.time1.value()) / deltaTime.value());
for (; writeIndex < currentState.fillToFrame; ++writeIndex) {
values[writeIndex] = value;
value *= multiplier;
++currentFrame;
}
// |value| got updated one extra time in the above loop. Restore it to the last computed value.
if (writeIndex >= 1)
value /= multiplier;
}
void AudioParamTimeline::processCancelValues(const AutomationState& currentState, float* values, size_t& currentFrame, float& value, unsigned& writeIndex)
{
// If the previous event was a SetTarget or ExponentialRamp
// event, the current value is one sample behind. Update
// the sample value by one sample, but only at the start of
// this CancelValues event.
if (currentState.event->hasDefaultCancelledValue())
value = currentState.event->value();
else {
double cancelFrame = currentState.time1.value() * currentState.sampleRate;
if (currentState.eventIndex >= 1 && cancelFrame <= currentFrame && currentFrame < cancelFrame + 1) {
auto lastEventType = m_events[currentState.eventIndex - 1].type();
if (lastEventType == ParamEvent::SetTarget) {
float target = m_events[currentState.eventIndex - 1].value();
float timeConstant = m_events[currentState.eventIndex - 1].timeConstant();
float discreteTimeConstant = static_cast<float>(AudioUtilities::discreteTimeConstantForSampleRate(timeConstant, currentState.controlRate));
value += (target - value) * discreteTimeConstant;
}
}
}
fillWithValue(values, value, currentState.fillToFrame, writeIndex);
currentFrame = currentState.fillToEndFrame;
}
void AudioParamTimeline::processSetTarget(const AutomationState& currentState, float* values, size_t& currentFrame, float& value, unsigned& writeIndex)
{
// Exponential approach to target value with given time constant.
float target = currentState.event->value();
float timeConstant = currentState.event->timeConstant();
float discreteTimeConstant = static_cast<float>(AudioUtilities::discreteTimeConstantForSampleRate(timeConstant, currentState.controlRate));
// Set the starting value correctly. This is only needed when the
// current time is "equal" to the start time of this event. This is
// to get the sampling correct if the start time of this automation
// isn't on a frame boundary. Otherwise, we can just continue from
// where we left off from the previous rendering quantum.
double rampStartFrame = currentState.time1.value() * currentState.sampleRate;
// Condition is c - 1 < r <= c where c = currentFrame and r =
// rampStartFrame. Compute it this way because currentFrame is
// unsigned and could be 0.
if (rampStartFrame <= currentFrame && currentFrame < rampStartFrame + 1)
value = target + (value - target) * exp(-(currentFrame * currentState.samplingPeriod - currentState.time1.value()) / timeConstant);
else {
// Otherwise, need to compute a new value because |value| is the
// last computed value of SetTarget. Time has progressed by one
// frame, so we need to update the value for the new frame.
value += (target - value) * discreteTimeConstant;
}
// If the value is close enough to the target, just fill in the data
// with the target value.
if (hasSetTargetConverged(value, target, Seconds { currentFrame * currentState.samplingPeriod }, currentState.time1, timeConstant)) {
currentFrame += currentState.fillToFrame - writeIndex;
fillWithValue(values, target, currentState.fillToFrame, writeIndex);
value = target;
return;
}
if (currentState.fillToFrame > writeIndex) {
// Resolve recursion by expanding constants to achieve a 4-step loop unrolling.
//
// v1 = v0 + (t - v0) * c
// v2 = v1 + (t - v1) * c
// v2 = v0 + (t - v0) * c + (t - (v0 + (t - v0) * c)) * c
// v2 = v0 + (t - v0) * c + (t - v0) * c - (t - v0) * c * c
// v2 = v0 + (t - v0) * c * (2 - c)
// Thus c0 = c, c1 = c*(2-c). The same logic applies to c2 and c3.
const float c0 = discreteTimeConstant;
const float c1 = c0 * (2 - c0);
const float c2 = c0 * ((c0 - 3) * c0 + 3);
const float c3 = c0 * (c0 * ((4 - c0) * c0 - 6) + 4);
float delta;
// Process 4 loop steps.
unsigned fillToFrameTrunc = writeIndex + ((currentState.fillToFrame - writeIndex) / 4) * 4;
const float cVector[4] = { 0, c0, c1, c2 };
for (; writeIndex < fillToFrameTrunc; writeIndex += 4) {
delta = target - value;
VectorMath::multiplyByScalar(&cVector[0], delta, &values[writeIndex], 4);
VectorMath::addScalar(&values[writeIndex], value, &values[writeIndex], 4);
value += delta * c3;
}
}
// Serially process remaining values.
for (; writeIndex < currentState.fillToFrame; ++writeIndex) {
values[writeIndex] = value;
value += (target - value) * discreteTimeConstant;
}
// The previous loops may have updated |value| one extra time.
// Reset it to the last computed value.
if (writeIndex >= 1)
value = values[writeIndex - 1];
currentFrame = currentState.fillToEndFrame;
}
void AudioParamTimeline::processSetValueCurve(const AutomationState& currentState, float* values, size_t& currentFrame, float& value, unsigned& writeIndex)
{
auto* curveData = currentState.event->curve().data();
unsigned numberOfCurvePoints = currentState.event->curve().size();
float curveEndValue = currentState.event->curveEndValue();
size_t fillToEndFrame = currentState.fillToEndFrame;
unsigned fillToFrame = currentState.fillToFrame;
// Curve events have duration, so don't just use next event time.
auto duration = currentState.event->duration();
double curvePointsPerFrame = currentState.event->curvePointsPerSecond() * currentState.samplingPeriod;
if (!curveData || !numberOfCurvePoints || duration <= 0_s || currentState.sampleRate <= 0) {
// Error condition - simply propagate previous value.
currentFrame = fillToEndFrame;
fillWithValue(values, value, fillToFrame, writeIndex);
return;
}
// Save old values and recalculate information based on the curve's duration
// instead of the next event time.
unsigned nextEventFillToFrame = fillToFrame;
double curveEndFrame = ceil(currentState.sampleRate * (currentState.time1 + duration).value());
if (currentState.endFrame > curveEndFrame)
fillToEndFrame = static_cast<size_t>(curveEndFrame);
else
fillToEndFrame = currentState.endFrame;
fillToFrame = (fillToEndFrame < currentState.startFrame) ? 0 : static_cast<unsigned>(fillToEndFrame - currentState.startFrame);
fillToFrame = std::min(fillToFrame, currentState.numberOfValues);
// Index into the curve data using a floating-point value.
// We're scaling the number of curve points by the duration (see curvePointsPerFrame).
double curveVirtualIndex = 0;
if (currentState.time1.value() < currentFrame * currentState.samplingPeriod) {
// Index somewhere in the middle of the curve data.
// Don't use timeToSampleFrame() since we want the exact floating-point frame.
double frameOffset = currentFrame - currentState.time1.value() * currentState.sampleRate;
curveVirtualIndex = curvePointsPerFrame * frameOffset;
}
// Set the default value in case fillToFrame is 0.
value = curveEndValue;
// Render the stretched curve data using nearest neighbor sampling.
// Oversampled curve data can be provided if smoothness is desired.
int k = 0;
for (; writeIndex < fillToFrame; ++writeIndex, ++k) {
// Compute current index this way to minimize round-off that would
// have occurred by incrementing the index by curvePointsPerFrame.
double currentVirtualIndex = curveVirtualIndex + k * curvePointsPerFrame;
unsigned curveIndex0;
// Clamp index to the last element of the array.
if (currentVirtualIndex < numberOfCurvePoints)
curveIndex0 = static_cast<unsigned>(currentVirtualIndex);
else
curveIndex0 = numberOfCurvePoints - 1;
unsigned curveIndex1 = std::min(curveIndex0 + 1, numberOfCurvePoints - 1);
// Linearly interpolate between the two nearest curve points.
// |delta| is clamped to 1 because currentVirtualIndex can exceed
// curveIndex0 by more than one. This can happen when we reached
// the end of the curve but still need values to fill out the
// current rendering quantum.
ASSERT(curveIndex0 < numberOfCurvePoints);
ASSERT(curveIndex1 < numberOfCurvePoints);
float c0 = curveData[curveIndex0];
float c1 = curveData[curveIndex1];
double delta = std::min(currentVirtualIndex - curveIndex0, 1.0);
value = c0 + (c1 - c0) * delta;
values[writeIndex] = value;
}
// If there's any time left after the duration of this event and the start
// of the next, then just propagate the last value.
if (writeIndex < nextEventFillToFrame) {
value = curveEndValue;
fillWithValue(values, value, nextEventFillToFrame, writeIndex);
}
// Re-adjust current time
currentFrame += nextEventFillToFrame;
}
void AudioParamTimeline::processSetTargetFollowedByRamp(int eventIndex, ParamEvent*& event, ParamEvent::Type nextEventType, size_t currentFrame, double sampleRate, double controlRate, float& value)
{
// If the current event is SetTarget and the next event is a LinearRampToValue or ExponentialRampToValue,
// special handling is needed. In this case, the linear and exponential ramp should start at wherever
// the SetTarget processing has reached.
if (event->type() != ParamEvent::SetTarget)
return;
if (nextEventType != ParamEvent::LinearRampToValue && nextEventType != ParamEvent::ExponentialRampToValue)
return;
// Replace the SetTarget with a SetValue to set the starting time and value for the ramp using the
// current frame. We need to update |value| appropriately depending on whether the ramp has started
// or not.
//
// If SetTarget starts somewhere between currentFrame - 1 and currentFrame, we directly compute the
// value it would have at currentFrame. If not, we update the value from the value from currentFrame - 1.
//
// Can't use the condition currentFrame - 1 <= t0 * sampleRate <= currentFrame because currentFrame
// is unsigned and could be 0. Instead, compute the condition this way, where f = currentFrame and
// Fs = sampleRate:
//
// f - 1 <= t0 * Fs <= f
// 2 * f - 2 <= 2 * Fs * t0 <= 2 * f
// -2 <= 2 * Fs * t0 - 2 * f <= 0
// -1 <= 2 * Fs * t0 - 2 * f + 1 <= 1
// std::abs(2 * Fs * t0 - 2 * f + 1) <= 1
if (std::abs(2 * sampleRate * event->time().value() - 2 * currentFrame + 1) <= 1) {
// SetTarget is starting somewhere between currentFrame - 1 and currentFrame. Compute the value
// the SetTarget would have at the currentFrame.
value = event->value() + (value - event->value()) * exp(-(currentFrame / sampleRate - event->time().value()) / event->timeConstant());
} else {
// SetTarget has already started. Update |value| one frame because it's the value from the previous frame.
float discreteTimeConstant = static_cast<float>(AudioUtilities::discreteTimeConstantForSampleRate(event->timeConstant(), controlRate));
value += (event->value() - value) * discreteTimeConstant;
}
// Insert a SetValueEvent to mark the starting value and time.
// Clear the clamp check because this doesn't need it.
m_events[eventIndex] = ParamEvent::createSetValueEvent(value, Seconds { currentFrame / sampleRate });
// Update our pointer to the current event because we just changed it.
event = &m_events[eventIndex];
}
float AudioParamTimeline::linearRampAtTime(Seconds t, float value1, Seconds time1, float value2, Seconds time2)
{
return value1 + (value2 - value1) * (t - time1).value() / (time2 - time1).value();
}
float AudioParamTimeline::exponentialRampAtTime(Seconds t, float value1, Seconds time1, float value2, Seconds time2)
{
return value1 * pow(value2 / value1, (t - time1).value() / (time2 - time1).value());
}
float AudioParamTimeline::valueCurveAtTime(Seconds t, Seconds time1, Seconds duration, const float* curveData, size_t curveLength)
{
double curveIndex = (curveLength - 1) / duration.value() * (t - time1).value();
size_t k = std::min(static_cast<size_t>(curveIndex), curveLength - 1);
size_t k1 = std::min(k + 1, curveLength - 1);
float c0 = curveData[k];
float c1 = curveData[k1];
float delta = std::min(curveIndex - k, 1.0);
return c0 + (c1 - c0) * delta;
}
void AudioParamTimeline::handleCancelValues(ParamEvent& event, ParamEvent* nextEvent, float& value2, Seconds& time2, ParamEvent::Type& nextEventType)
{
if (!nextEvent || nextEvent->type() != ParamEvent::CancelValues || !nextEvent->savedEvent())
return;
float value1 = event.value();
auto time1 = event.time();
switch (event.type()) {
case ParamEvent::CancelValues:
case ParamEvent::LinearRampToValue:
case ParamEvent::ExponentialRampToValue:
case ParamEvent::SetValue: {
// These three events potentially establish a starting value for
// the following event, so we need to examine the cancelled
// event to see what to do.
auto* savedEvent = nextEvent->savedEvent();
// Update the end time and type to pretend that we're running
// this saved event type.
time2 = nextEvent->time();
nextEventType = savedEvent->type;
if (nextEvent->hasDefaultCancelledValue()) {
// We've already established a value for the cancelled
// event, so just return it.
value2 = nextEvent->value();
} else {
// If the next event would have been a LinearRamp or
// ExponentialRamp, we need to compute a new end value for
// the event so that the curve works continues as if it were
// not cancelled.
switch (savedEvent->type) {
case ParamEvent::LinearRampToValue:
value2 = linearRampAtTime(nextEvent->time(), value1, time1, savedEvent->value, savedEvent->time);
break;
case ParamEvent::ExponentialRampToValue:
value2 = exponentialRampAtTime(nextEvent->time(), value1, time1, savedEvent->value, savedEvent->time);
break;
case ParamEvent::SetValueCurve:
case ParamEvent::SetValue:
case ParamEvent::SetTarget:
case ParamEvent::CancelValues:
// These cannot be possible types for the saved event because they can't be created.
// createCancelValuesEvent doesn't allow them (SetValue, SetTarget, CancelValues) or
// cancelScheduledValues() doesn't create such an event (SetValueCurve).
ASSERT_NOT_REACHED();
break;
case ParamEvent::LastType:
ASSERT_NOT_REACHED();
break;
}
// Cache the new value so we don't keep computing it over and over.
nextEvent->setCancelledValue(value2);
}
} break;
case ParamEvent::SetValueCurve:
// Everything needed for this was handled when cancelling was
// done.
break;
case ParamEvent::SetTarget:
// Nothing special needs to be done for SetTarget
// followed by CancelValues.
break;
case ParamEvent::LastType:
ASSERT_NOT_REACHED();
break;
}
}
auto AudioParamTimeline::ParamEvent::createSetValueEvent(float value, Seconds time) -> ParamEvent
{
return ParamEvent { ParamEvent::SetValue, value, time, 0, Seconds { }, Vector<float> { }, 0, 0, std::nullopt };
}
auto AudioParamTimeline::ParamEvent::createLinearRampEvent(float value, Seconds time) -> ParamEvent
{
return { ParamEvent::LinearRampToValue, value, time, 0, Seconds { }, Vector<float> { }, 0, 0, std::nullopt };
}
auto AudioParamTimeline::ParamEvent::createExponentialRampEvent(float value, Seconds time) -> ParamEvent
{
return { ParamEvent::ExponentialRampToValue, value, time, 0, Seconds { }, Vector<float> { }, 0, 0, std::nullopt };
}
auto AudioParamTimeline::ParamEvent::createSetTargetEvent(float target, Seconds time, float timeConstant) -> ParamEvent
{
// The time line code does not expect a timeConstant of 0. (It returns NaN or Infinity due to division by zero. The caller
// should have converted this to a SetValueEvent.
ASSERT(!!timeConstant);
return { ParamEvent::SetTarget, target, time, timeConstant, Seconds { }, Vector<float> { }, 0, 0, std::nullopt };
}
auto AudioParamTimeline::ParamEvent::createSetValueCurveEvent(Vector<float>&& curve, Seconds time, Seconds duration) -> ParamEvent
{
double curvePointsPerSecond = (curve.size() - 1) / duration.value();
float curveEndValue = curve.last();
return { ParamEvent::SetValueCurve, 0, time, 0, duration, WTFMove(curve), curvePointsPerSecond, curveEndValue, std::nullopt };
}
auto AudioParamTimeline::ParamEvent::createCancelValuesEvent(Seconds cancelTime, std::optional<SavedEvent>&& savedEvent) -> ParamEvent
{
#if ASSERT_ENABLED
if (savedEvent) {
// The savedEvent can only have certain event types. Verify that.
auto savedEventType = savedEvent->type;
ASSERT(savedEventType != ParamEvent::LastType);
ASSERT(savedEventType == ParamEvent::LinearRampToValue
|| savedEventType == ParamEvent::ExponentialRampToValue
|| savedEventType == ParamEvent::SetValueCurve);
}
#endif
return { ParamEvent::CancelValues, 0, cancelTime, 0, Seconds { }, Vector<float> { }, 0, 0, WTFMove(savedEvent) };
}
bool AudioParamTimeline::isEventCurrent(const ParamEvent& event, const ParamEvent* nextEvent, size_t currentFrame, double sampleRate) const
{
// WARNING: due to round-off it might happen that nextEvent->time() is
// just larger than currentFrame/sampleRate. This means that we will end
// up running the |event| again. The code below had better be prepared
// for this case! What should happen is the fillToFrame should be 0 so
// that while the event is actually run again, nothing actually gets
// computed, and we move on to the next event.
//
// An example of this case is setValueCurveAtTime. The time at which
// setValueCurveAtTime ends (and the setValueAtTime begins) might be
// just past currentTime/sampleRate. Then setValueCurveAtTime will be
// processed again before advancing to setValueAtTime. The number of
// frames to be processed should be zero in this case.
if (nextEvent && nextEvent->time().value() < currentFrame / sampleRate) {
// But if the current event is a SetValue event and the event time is
// between currentFrame - 1 and curentFrame (in time). we don't want to
// skip it. If we do skip it, the SetValue event is completely skipped
// and not applied, which is wrong. Other events don't have this problem.
// (Because currentFrame is unsigned, we do the time check in this funny,
// but equivalent way.)
double eventFrame = event.time().value() * sampleRate;
// Condition is currentFrame - 1 < eventFrame <= currentFrame, but
// currentFrame is unsigned and could be 0, so use
// currentFrame < eventFrame + 1 instead.
if (!((event.type() == ParamEvent::SetValue && (eventFrame <= currentFrame) && (currentFrame < eventFrame + 1)))) {
// This is not the special SetValue event case, and nextEvent is
// in the past. We can skip processing of this event since it's
// in past.
return false;
}
}
return true;
}
bool AudioParamTimeline::hasValues(size_t startFrame, double sampleRate) const
{
if (!m_eventsLock.tryLock())
return true;
Locker locker { AdoptLock, m_eventsLock };
if (m_events.isEmpty())
return false;
if (m_events[0].time().value() > (startFrame + AudioUtilities::renderQuantumSize) / sampleRate) {
// The first event starts after the end of this rendering quantum so no automation is needed.
auto eventType = m_events[0].type();
if (eventType == ParamEvent::SetTarget || eventType == ParamEvent::SetValue || eventType == ParamEvent::SetValueCurve)
return false;
}
// Don't try and optimize when there is more than one event in the timeline as it gets complicated.
if (m_events.size() > 1)
return true;
switch (m_events[0].type()) {
case ParamEvent::SetTarget:
// Need automation if the event starts somewhere before the end of the current render quantum.
return m_events[0].time().value() <= (startFrame + AudioUtilities::renderQuantumSize) / sampleRate;
case ParamEvent::SetValue:
case ParamEvent::LinearRampToValue:
case ParamEvent::ExponentialRampToValue:
case ParamEvent::CancelValues:
// If these events are in the past, we don't need any automation; the value is a constant.
return m_events[0].time().value() >= startFrame / sampleRate;
case ParamEvent::SetValueCurve: {
auto curveEndTime = m_events[0].time() + m_events[0].duration();
double startTime = startFrame / sampleRate;
return m_events[0].time().value() <= startTime && startTime < curveEndTime.value();
}
case ParamEvent::LastType:
ASSERT_NOT_REACHED();
break;
}
return true;
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|