File: DelayDSPKernel.cpp

package info (click to toggle)
webkit2gtk 2.42.2-1~deb12u1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 362,452 kB
  • sloc: cpp: 2,881,971; javascript: 282,447; ansic: 134,088; python: 43,789; ruby: 18,308; perl: 15,872; asm: 14,389; xml: 4,395; yacc: 2,350; sh: 2,074; java: 1,734; lex: 1,323; makefile: 288; pascal: 60
file content (240 lines) | stat: -rw-r--r-- 9,964 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
/*
 * Copyright (C) 2010, Google Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1.  Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2.  Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"

#if ENABLE(WEB_AUDIO)

#include "DelayDSPKernel.h"

#include "AudioUtilities.h"
#include "VectorMath.h"
#include <algorithm>

namespace WebCore {

static size_t bufferLengthForDelay(double maxDelayTime, double sampleRate)
{
    // Compute the length of the buffer needed to handle a max delay of |maxDelayTime|. Add an additional render quantum frame size so we can
    // vectorize the delay processing. The extra space is needed so that writes to the buffer won't overlap reads from the buffer.
    return AudioUtilities::renderQuantumSize + AudioUtilities::timeToSampleFrame(maxDelayTime, sampleRate, AudioUtilities::SampleFrameRounding::Up);
}

// Returns (a - b) if a is greater than b, 0 otherwise.
template<typename T> static inline size_t positiveSubtract(T a, T b)
{
    return a <= b ? 0 : static_cast<size_t>(a - b);
}

static void copyToCircularBuffer(float* buffer, size_t writeIndex, size_t bufferLength, const float* source, size_t framesToProcess)
{
    // The algorithm below depends on this being true because we don't expect to have to fill the entire buffer more than once.
    RELEASE_ASSERT(bufferLength >= framesToProcess);

    // Copy |framesToProcess| values from |source| to the circular buffer that starts at |buffer| of length |bufferLength|. The
    // copy starts at index |writeIndex| into the buffer.
    auto* writePointer = &buffer[writeIndex];
    size_t remainder = positiveSubtract(bufferLength, writeIndex);

    // Copy the frames over, carefully handling the case where we need to wrap around to the beginning of the buffer.
    memcpy(writePointer, source, sizeof(*writePointer) * std::min(framesToProcess, remainder));
    memcpy(buffer, source + remainder, sizeof(*buffer) * positiveSubtract(framesToProcess, remainder));
}

DelayDSPKernel::DelayDSPKernel(DelayProcessor* processor)
    : AudioDSPKernel(processor)
    , m_delayTimes(AudioUtilities::renderQuantumSize)
    , m_tempBuffer(AudioUtilities::renderQuantumSize)
{
    ASSERT(processor && processor->sampleRate() > 0);
    if (!(processor && processor->sampleRate() > 0))
        return;

    m_maxDelayTime = processor->maxDelayTime();
    ASSERT(m_maxDelayTime >= 0);
    if (m_maxDelayTime < 0)
        return;

    m_buffer.resize(bufferLengthForDelay(m_maxDelayTime, processor->sampleRate()));
}

DelayDSPKernel::DelayDSPKernel(double maxDelayTime, float sampleRate)
    : AudioDSPKernel(sampleRate)
    , m_maxDelayTime(maxDelayTime)
    , m_tempBuffer(AudioUtilities::renderQuantumSize)
{
    ASSERT(maxDelayTime > 0.0);
    if (maxDelayTime <= 0.0)
        return;

    size_t bufferLength = bufferLengthForDelay(maxDelayTime, sampleRate);
    ASSERT(bufferLength);
    if (!bufferLength)
        return;

    m_buffer.resize(bufferLength);
}

void DelayDSPKernel::process(const float* source, float* destination, size_t framesToProcess)
{
    ASSERT(m_buffer.size());
    ASSERT(source && destination);
    if (UNLIKELY(m_buffer.isEmpty() || !source || !destination))
        return;

    bool sampleAccurate = delayProcessor() && delayProcessor()->delayTime().hasSampleAccurateValues();
    bool shouldUseARate = delayProcessor() && delayProcessor()->delayTime().automationRate() == AutomationRate::ARate;
    if (sampleAccurate && shouldUseARate)
        processARate(source, destination, framesToProcess);
    else
        processKRate(source, destination, framesToProcess);
}

void DelayDSPKernel::processARate(const float* source, float* destination, size_t framesToProcess)
{
    size_t bufferLength = m_buffer.size();
    auto* buffer = m_buffer.data();

    delayProcessor()->delayTime().calculateSampleAccurateValues(m_delayTimes.data(), framesToProcess);

    copyToCircularBuffer(buffer, m_writeIndex, bufferLength, source, framesToProcess);

    for (unsigned i = 0; i < framesToProcess; ++i) {
        double delayTime = std::clamp<double>(m_delayTimes[i], 0.0, maxDelayTime());
        double desiredDelayFrames = delayTime * sampleRate();

        double readPosition = m_writeIndex + bufferLength - desiredDelayFrames;
        if (readPosition >= bufferLength)
            readPosition -= bufferLength;

        // Linearly interpolate in-between delay times.
        size_t readIndex1 = static_cast<size_t>(readPosition);
        size_t readIndex2 = (readIndex1 + 1) % bufferLength;
        float interpolationFactor = readPosition - readIndex1;

        m_writeIndex = (m_writeIndex + 1) % bufferLength;

        float sample1 = buffer[readIndex1];
        float sample2 = buffer[readIndex2];
        destination[i] = sample1 + interpolationFactor * (sample2 - sample1);
    }
}

// Optimized version of processARate() when the delayTime is constant.
void DelayDSPKernel::processKRate(const float* source, float* destination, size_t framesToProcess)
{
    size_t bufferLength = m_buffer.size();
    auto* buffer = m_buffer.data();

    double delayTime = delayProcessor() ? delayProcessor()->delayTime().finalValue() : m_desiredDelayFrames / sampleRate();
    // Make sure the delay time is in a valid range.
    delayTime = std::clamp(delayTime, 0.0, maxDelayTime());
    double desiredDelayFrames = delayTime * sampleRate();

    double readPosition = m_writeIndex + bufferLength - desiredDelayFrames;
    if (readPosition >= bufferLength)
        readPosition -= bufferLength;

    // Linearly interpolate in-between delay times. |readIndex1| and |readIndex2| are the indices of the frames to be used
    // for interpolation.
    size_t readIndex1 = static_cast<size_t>(readPosition);
    float interpolationFactor = readPosition - readIndex1;
    auto* bufferEnd = &buffer[bufferLength];
    ASSERT(static_cast<unsigned>(bufferLength) >= framesToProcess);

    // sample1 and sample2 hold the current and next samples in the buffer. These are used for interoplating the delay value.
    // To reduce memory usage and an extra memcpy, sample1 can be the same as destination.
    // VectorMath::interpolate() below has an optimization in the case where the input buffer is the same as the output one.
    auto* sample1 = destination;

    // Copy data from the source into the buffer, starting at the write index. The buffer is circular, so carefully handle
    // the wrapping of the write pointer.
    copyToCircularBuffer(buffer, m_writeIndex, bufferLength, source, framesToProcess);
    m_writeIndex = (m_writeIndex + framesToProcess) % bufferLength;

    // Now copy out the samples from the buffer, starting at the read pointer, carefully handling wrapping of the read pointer.
    auto* readPointer = &buffer[readIndex1];

    size_t remainder = positiveSubtract(bufferEnd, readPointer);
    memcpy(sample1, readPointer, sizeof(*sample1) * std::min(framesToProcess, remainder));
    memcpy(sample1 + remainder, buffer, sizeof(*sample1) * positiveSubtract(framesToProcess, remainder));

    // If interpolationFactor is 0, we don't need to do any interpolation and sample1 contains the desired values.
    if (!interpolationFactor)
        return;

    ASSERT(framesToProcess <= m_tempBuffer.size());

    size_t readIndex2 = (readIndex1 + 1) % bufferLength;
    auto* sample2 = m_tempBuffer.data();

    readPointer = &buffer[readIndex2];
    remainder = positiveSubtract(bufferEnd, readPointer);
    memcpy(sample2, readPointer, sizeof(*sample2) * std::min(framesToProcess, remainder));
    memcpy(sample2 + remainder, buffer, sizeof(*sample2) * positiveSubtract(framesToProcess, remainder));

    // Interpolate samples.
    // destination[k] = sample1[k] + interpolationFactor * (sample2[k] - sample1[k]);
    VectorMath::interpolate(sample1, sample2, interpolationFactor, destination, framesToProcess);
}

void DelayDSPKernel::processOnlyAudioParams(size_t framesToProcess)
{
    if (!delayProcessor())
        return;

    float values[AudioUtilities::renderQuantumSize];
    ASSERT(framesToProcess <= AudioUtilities::renderQuantumSize);

    delayProcessor()->delayTime().calculateSampleAccurateValues(values, framesToProcess);
}

void DelayDSPKernel::reset()
{
    m_buffer.zero();
}

double DelayDSPKernel::tailTime() const
{
    return m_maxDelayTime;
}

double DelayDSPKernel::latencyTime() const
{
    return 0;
}

bool DelayDSPKernel::requiresTailProcessing() const
{
    // Always return true even if the tail time and latency might both
    // be zero. This is for simplicity; most interesting delay nodes
    // have non-zero delay times anyway. And it's ok to return true. It
    // just means the node lives a little longer than strictly
    // necessary.
    return true;
}

} // namespace WebCore

#endif // ENABLE(WEB_AUDIO)