1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
/*
* Copyright (C) 2012, Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
* ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#if ENABLE(WEB_AUDIO)
#include "OscillatorNode.h"
#include "AudioNodeOutput.h"
#include "AudioParam.h"
#include "AudioUtilities.h"
#include "PeriodicWave.h"
#include "VectorMath.h"
#include <wtf/IsoMallocInlines.h>
namespace WebCore {
WTF_MAKE_ISO_ALLOCATED_IMPL(OscillatorNode);
// Breakpoints where we deicde to do linear interoplation, 3-point interpolation or 5-point interpolation. See doInterpolation().
constexpr float interpolate2Point = 0.3;
constexpr float interpolate3Point = 0.16;
// Convert the detune value (in cents) to a frequency scale multiplier: 2^(d/1200).
static inline float detuneToFrequencyMultiplier(float detuneValue)
{
return std::exp2(detuneValue / 1200);
}
// Clamp the frequency value to lie within Nyquist frequency. For NaN, arbitrarily clamp to +Nyquist.
static void clampFrequency(float* frequency, size_t framesToProcess, float nyquist)
{
for (size_t k = 0; k < framesToProcess; ++k) {
float f = frequency[k];
frequency[k] = std::isnan(f) ? nyquist : clampTo(f, -nyquist, nyquist);
}
}
ExceptionOr<Ref<OscillatorNode>> OscillatorNode::create(BaseAudioContext& context, const OscillatorOptions& options)
{
if (options.type == OscillatorType::Custom && !options.periodicWave)
return Exception { InvalidStateError, "Must provide periodicWave when using custom type."_s };
auto oscillator = adoptRef(*new OscillatorNode(context, options));
oscillator->suspendIfNeeded();
auto result = oscillator->handleAudioNodeOptions(options, { 2, ChannelCountMode::Max, ChannelInterpretation::Speakers });
if (result.hasException())
return result.releaseException();
if (options.periodicWave)
oscillator->setPeriodicWave(*options.periodicWave);
else {
result = oscillator->setTypeForBindings(options.type);
if (result.hasException())
return result.releaseException();
}
return oscillator;
}
OscillatorNode::OscillatorNode(BaseAudioContext& context, const OscillatorOptions& options)
: AudioScheduledSourceNode(context, NodeTypeOscillator)
, m_frequency(AudioParam::create(context, "frequency"_s, options.frequency, -context.sampleRate() / 2, context.sampleRate() / 2, AutomationRate::ARate))
, m_detune(AudioParam::create(context, "detune"_s, options.detune, -1200 * log2f(std::numeric_limits<float>::max()), 1200 * log2f(std::numeric_limits<float>::max()), AutomationRate::ARate))
, m_phaseIncrements(AudioUtilities::renderQuantumSize)
, m_detuneValues(AudioUtilities::renderQuantumSize)
{
// An oscillator is always mono.
addOutput(1);
initialize();
}
OscillatorNode::~OscillatorNode()
{
uninitialize();
}
ExceptionOr<void> OscillatorNode::setTypeForBindings(OscillatorType type)
{
ALWAYS_LOG(LOGIDENTIFIER, type);
ASSERT(isMainThread());
if (type == OscillatorType::Custom) {
if (m_type != OscillatorType::Custom)
return Exception { InvalidStateError, "OscillatorNode.type cannot be changed to 'custom'"_s };
return { };
}
setPeriodicWave(context().periodicWave(type));
m_type = type;
return { };
}
bool OscillatorNode::calculateSampleAccuratePhaseIncrements(size_t framesToProcess)
{
bool isGood = framesToProcess <= m_phaseIncrements.size() && framesToProcess <= m_detuneValues.size();
ASSERT(isGood);
if (!isGood)
return false;
if (m_firstRender) {
m_firstRender = false;
m_frequency->resetSmoothedValue();
m_detune->resetSmoothedValue();
}
bool hasSampleAccurateValues = false;
bool hasFrequencyChanges = false;
float* phaseIncrements = m_phaseIncrements.data();
float finalScale = m_periodicWave->rateScale();
if (m_frequency->hasSampleAccurateValues() && m_frequency->automationRate() == AutomationRate::ARate) {
hasSampleAccurateValues = true;
hasFrequencyChanges = true;
// Get the sample-accurate frequency values and convert to phase increments.
// They will be converted to phase increments below.
m_frequency->calculateSampleAccurateValues(phaseIncrements, framesToProcess);
} else {
float frequency = m_frequency->finalValue();
finalScale *= frequency;
}
if (m_detune->hasSampleAccurateValues() && m_detune->automationRate() == AutomationRate::ARate) {
hasSampleAccurateValues = true;
// Get the sample-accurate detune values.
float* detuneValues = hasFrequencyChanges ? m_detuneValues.data() : phaseIncrements;
m_detune->calculateSampleAccurateValues(detuneValues, framesToProcess);
// Convert from cents to rate scalar.
VectorMath::multiplyByScalar(detuneValues, 1.0 / 1200, detuneValues, framesToProcess);
for (unsigned i = 0; i < framesToProcess; ++i)
detuneValues[i] = std::exp2(detuneValues[i]);
if (hasFrequencyChanges) {
// Multiply frequencies by detune scalings.
VectorMath::multiply(detuneValues, phaseIncrements, phaseIncrements, framesToProcess);
}
} else {
float detune = m_detune->finalValue();
float detuneScale = detuneToFrequencyMultiplier(detune);
finalScale *= detuneScale;
}
if (hasSampleAccurateValues) {
clampFrequency(phaseIncrements, framesToProcess, context().sampleRate() / 2);
// Convert from frequency to wave increment.
VectorMath::multiplyByScalar(phaseIncrements, finalScale, phaseIncrements, framesToProcess);
}
return hasSampleAccurateValues;
}
static float doInterpolation(double virtualReadIndex, float incr, unsigned readIndexMask, float tableInterpolationFactor, const float* lowerWaveData, const float* higherWaveData)
{
ASSERT(incr >= 0);
ASSERT(std::isfinite(virtualReadIndex));
double sampleLower = 0;
double sampleHigher = 0;
unsigned readIndex0 = static_cast<unsigned>(virtualReadIndex);
// Consider a typical sample rate of 44100 Hz and max periodic wave
// size of 4096. The relationship between |incr| and the frequency
// of the oscillator is |incr| = freq * 4096/44100. Or freq =
// |incr|*44100/4096 = 10.8*|incr|.
//
// For the |incr| thresholds below, this means that we use linear
// interpolation for all freq >= 3.2 Hz, 3-point Lagrange
// for freq >= 1.7 Hz and 5-point Lagrange for every thing else.
//
// We use Lagrange interpolation because it's relatively simple to
// implement and fairly inexpensive, and the interpolator always
// passes through known points.
if (incr >= interpolate2Point) {
// Increment is fairly large, so we're doing no more than about 3
// points between each wave table entry. Assume linear
// interpolation between points is good enough.
unsigned readIndex2 = readIndex0 + 1;
// Contain within valid range.
readIndex0 = readIndex0 & readIndexMask;
readIndex2 = readIndex2 & readIndexMask;
float sample1Lower = lowerWaveData[readIndex0];
float sample2Lower = lowerWaveData[readIndex2];
float sample1Higher = higherWaveData[readIndex0];
float sample2Higher = higherWaveData[readIndex2];
// Linearly interpolate within each table (lower and higher).
double interpolationFactor = static_cast<float>(virtualReadIndex) - readIndex0;
sampleHigher = (1 - interpolationFactor) * sample1Higher + interpolationFactor * sample2Higher;
sampleLower = (1 - interpolationFactor) * sample1Lower + interpolationFactor * sample2Lower;
} else if (incr >= interpolate3Point) {
// We're doing about 6 interpolation values between each wave
// table sample. Just use a 3-point Lagrange interpolator to get a
// better estimate than just linear.
//
// See 3-point formula in http://dlmf.nist.gov/3.3#ii
unsigned readIndex[3];
for (int k = -1; k <= 1; ++k)
readIndex[k + 1] = (readIndex0 + k) & readIndexMask;
double a[3];
double t = virtualReadIndex - readIndex0;
a[0] = 0.5 * t * (t - 1);
a[1] = 1 - t * t;
a[2] = 0.5 * t * (t + 1);
for (int k = 0; k < 3; ++k) {
sampleLower += a[k] * lowerWaveData[readIndex[k]];
sampleHigher += a[k] * higherWaveData[readIndex[k]];
}
} else {
// For everything else (more than 6 points per entry), we'll do a
// 5-point Lagrange interpolator. This is a trade-off between
// quality and speed.
//
// See 5-point formula in http://dlmf.nist.gov/3.3#ii
unsigned readIndex[5];
for (int k = -2; k <= 2; ++k)
readIndex[k + 2] = (readIndex0 + k) & readIndexMask;
double a[5];
double t = virtualReadIndex - readIndex0;
double t2 = t * t;
a[0] = t * (t2 - 1) * (t - 2) / 24;
a[1] = -t * (t - 1) * (t2 - 4) / 6;
a[2] = (t2 - 1) * (t2 - 4) / 4;
a[3] = -t * (t + 1) * (t2 - 4) / 6;
a[4] = t * (t2 - 1) * (t + 2) / 24;
for (int k = 0; k < 5; ++k) {
sampleLower += a[k] * lowerWaveData[readIndex[k]];
sampleHigher += a[k] * higherWaveData[readIndex[k]];
}
}
// Then interpolate between the two tables.
float sample = (1 - tableInterpolationFactor) * sampleHigher + tableInterpolationFactor * sampleLower;
return sample;
}
double OscillatorNode::processARate(int n, float* destP, double virtualReadIndex, float* phaseIncrements)
{
float rateScale = m_periodicWave->rateScale();
float invRateScale = 1 / rateScale;
unsigned periodicWaveSize = m_periodicWave->periodicWaveSize();
double invPeriodicWaveSize = 1.0 / periodicWaveSize;
unsigned readIndexMask = periodicWaveSize - 1;
float* higherWaveData = nullptr;
float* lowerWaveData = nullptr;
float tableInterpolationFactor = 0;
for (int k = 0; k < n; ++k) {
float incr = *phaseIncrements++;
float frequency = invRateScale * incr;
m_periodicWave->waveDataForFundamentalFrequency(frequency, lowerWaveData, higherWaveData, tableInterpolationFactor);
float sample = doInterpolation(virtualReadIndex, std::abs(incr), readIndexMask, tableInterpolationFactor, lowerWaveData, higherWaveData);
*destP++ = sample;
// Increment virtual read index and wrap virtualReadIndex into the range
// 0 -> periodicWaveSize.
virtualReadIndex += incr;
virtualReadIndex -= floor(virtualReadIndex * invPeriodicWaveSize) * periodicWaveSize;
}
return virtualReadIndex;
}
double OscillatorNode::processKRate(int n, float* destP, double virtualReadIndex)
{
unsigned periodicWaveSize = m_periodicWave->periodicWaveSize();
double invPeriodicWaveSize = 1.0 / periodicWaveSize;
unsigned readIndexMask = periodicWaveSize - 1;
float frequency = 0;
float* higherWaveData = nullptr;
float* lowerWaveData = nullptr;
float tableInterpolationFactor = 0;
frequency = m_frequency->finalValue();
float detune = m_detune->finalValue();
float detuneScale = detuneToFrequencyMultiplier(detune);
frequency *= detuneScale;
clampFrequency(&frequency, 1, context().sampleRate() / 2);
m_periodicWave->waveDataForFundamentalFrequency(frequency, lowerWaveData, higherWaveData, tableInterpolationFactor);
float rateScale = m_periodicWave->rateScale();
float incr = frequency * rateScale;
for (int k = 0; k < n; ++k) {
float sample = doInterpolation(virtualReadIndex, std::abs(incr), readIndexMask, tableInterpolationFactor, lowerWaveData, higherWaveData);
*destP++ = sample;
// Increment virtual read index and wrap virtualReadIndex into the range
// 0 -> periodicWaveSize.
virtualReadIndex += incr;
virtualReadIndex -= floor(virtualReadIndex * invPeriodicWaveSize) * periodicWaveSize;
}
return virtualReadIndex;
}
void OscillatorNode::process(size_t framesToProcess)
{
auto& outputBus = *output(0)->bus();
if (!isInitialized() || !outputBus.numberOfChannels()) {
outputBus.zero();
return;
}
ASSERT(framesToProcess <= m_phaseIncrements.size());
if (framesToProcess > m_phaseIncrements.size())
return;
// The audio thread can't block on this lock, so we use tryLock() instead.
if (!m_processLock.tryLock()) {
// Too bad - tryLock() failed. We must be in the middle of changing wave-tables.
outputBus.zero();
return;
}
Locker locker { AdoptLock, m_processLock };
// We must access m_periodicWave only inside the lock.
if (!m_periodicWave.get()) {
outputBus.zero();
return;
}
size_t quantumFrameOffset = 0;
size_t nonSilentFramesToProcess = 0;
double startFrameOffset = 0;
updateSchedulingInfo(framesToProcess, outputBus, quantumFrameOffset, nonSilentFramesToProcess, startFrameOffset);
if (!nonSilentFramesToProcess) {
outputBus.zero();
return;
}
float* destP = outputBus.channel(0)->mutableData();
ASSERT(quantumFrameOffset <= framesToProcess);
// We keep virtualReadIndex double-precision since we're accumulating values.
double virtualReadIndex = m_virtualReadIndex;
float rateScale = m_periodicWave->rateScale();
bool hasSampleAccurateValues = calculateSampleAccuratePhaseIncrements(framesToProcess);
float frequency = 0;
float* higherWaveData = nullptr;
float* lowerWaveData = nullptr;
float tableInterpolationFactor = 0;
if (!hasSampleAccurateValues) {
frequency = m_frequency->finalValue();
float detune = m_detune->finalValue();
float detuneScale = detuneToFrequencyMultiplier(detune);
frequency *= detuneScale;
clampFrequency(&frequency, 1, context().sampleRate() / 2);
m_periodicWave->waveDataForFundamentalFrequency(frequency, lowerWaveData, higherWaveData, tableInterpolationFactor);
}
float* phaseIncrements = m_phaseIncrements.data();
// Start rendering at the correct offset.
destP += quantumFrameOffset;
int n = nonSilentFramesToProcess;
// If startFrameOffset is not 0, that means the oscillator doesn't actually
// start at quantumFrameOffset, but just past that time. Adjust destP and n
// to reflect that, and adjust virtualReadIndex to start the value at
// startFrameOffset.
if (startFrameOffset > 0) {
++destP;
--n;
virtualReadIndex += (1 - startFrameOffset) * frequency * rateScale;
ASSERT(virtualReadIndex < m_periodicWave->periodicWaveSize());
} else if (startFrameOffset < 0)
virtualReadIndex = -startFrameOffset * frequency * rateScale;
if (hasSampleAccurateValues)
virtualReadIndex = processARate(n, destP, virtualReadIndex, phaseIncrements);
else
virtualReadIndex = processKRate(n, destP, virtualReadIndex);
m_virtualReadIndex = virtualReadIndex;
outputBus.clearSilentFlag();
}
void OscillatorNode::setPeriodicWave(PeriodicWave& periodicWave)
{
ALWAYS_LOG(LOGIDENTIFIER, "sample rate = ", periodicWave.sampleRate(), ", wave size = ", periodicWave.periodicWaveSize(), ", rate scale = ", periodicWave.rateScale());
ASSERT(isMainThread());
// This synchronizes with process().
Locker locker { m_processLock };
m_periodicWave = &periodicWave;
m_type = OscillatorType::Custom;
}
bool OscillatorNode::propagatesSilence() const
{
ASSERT(context().isAudioThread());
if (!isPlayingOrScheduled() || hasFinished())
return true;
if (!m_processLock.tryLock())
return false; // Assume we have a periodic wave if we are unable to grab the lock.
Locker locker { AdoptLock, m_processLock };
return !m_periodicWave.get();
}
} // namespace WebCore
#endif // ENABLE(WEB_AUDIO)
|