1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
/*
* Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
* Copyright (C) 2008, 2010 Nokia Corporation and/or its subsidiary(-ies)
* Copyright (C) 2007 Alp Toker <alp@atoker.com>
* Copyright (C) 2008 Eric Seidel <eric@webkit.org>
* Copyright (C) 2008 Dirk Schulze <krit@webkit.org>
* Copyright (C) 2010 Torch Mobile (Beijing) Co. Ltd. All rights reserved.
* Copyright (C) 2012 Intel Corporation. All rights reserved.
* Copyright (C) 2012, 2013 Adobe Systems Incorporated. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
* OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
* THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include "config.h"
#include "CanvasPath.h"
#include "AffineTransform.h"
#include "DOMPointInit.h"
#include "FloatRect.h"
#include "FloatRoundedRect.h"
#include "FloatSize.h"
#include <algorithm>
#include <wtf/MathExtras.h>
namespace WebCore {
void CanvasPath::closePath()
{
if (m_path.isEmpty())
return;
FloatRect boundRect = m_path.fastBoundingRect();
if (boundRect.width() || boundRect.height())
m_path.closeSubpath();
}
void CanvasPath::moveTo(float x, float y)
{
if (!std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
m_path.moveTo(FloatPoint(x, y));
}
void CanvasPath::lineTo(FloatPoint point)
{
lineTo(point.x(), point.y());
}
void CanvasPath::lineTo(float x, float y)
{
if (!std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
FloatPoint p1 = FloatPoint(x, y);
if (m_path.isEmpty())
m_path.moveTo(p1);
else if (p1 != m_path.currentPoint())
m_path.addLineTo(p1);
}
void CanvasPath::quadraticCurveTo(float cpx, float cpy, float x, float y)
{
if (!std::isfinite(cpx) || !std::isfinite(cpy) || !std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
if (m_path.isEmpty())
m_path.moveTo(FloatPoint(cpx, cpy));
FloatPoint p1 = FloatPoint(x, y);
FloatPoint cp = FloatPoint(cpx, cpy);
if (p1 != m_path.currentPoint() || p1 != cp)
m_path.addQuadCurveTo(cp, p1);
}
void CanvasPath::bezierCurveTo(float cp1x, float cp1y, float cp2x, float cp2y, float x, float y)
{
if (!std::isfinite(cp1x) || !std::isfinite(cp1y) || !std::isfinite(cp2x) || !std::isfinite(cp2y) || !std::isfinite(x) || !std::isfinite(y))
return;
if (!hasInvertibleTransform())
return;
if (m_path.isEmpty())
m_path.moveTo(FloatPoint(cp1x, cp1y));
FloatPoint p1 = FloatPoint(x, y);
FloatPoint cp1 = FloatPoint(cp1x, cp1y);
FloatPoint cp2 = FloatPoint(cp2x, cp2y);
if (p1 != m_path.currentPoint() || p1 != cp1 || p1 != cp2)
m_path.addBezierCurveTo(cp1, cp2, p1);
}
ExceptionOr<void> CanvasPath::arcTo(float x1, float y1, float x2, float y2, float r)
{
if (!std::isfinite(x1) || !std::isfinite(y1) || !std::isfinite(x2) || !std::isfinite(y2) || !std::isfinite(r))
return { };
if (r < 0)
return Exception { IndexSizeError };
if (!hasInvertibleTransform())
return { };
FloatPoint p1 = FloatPoint(x1, y1);
FloatPoint p2 = FloatPoint(x2, y2);
if (m_path.isEmpty())
m_path.moveTo(p1);
else if (p1 == m_path.currentPoint() || p1 == p2 || !r)
lineTo(x1, y1);
else
m_path.addArcTo(p1, p2, r);
return { };
}
static void normalizeAngles(float& startAngle, float& endAngle, bool anticlockwise)
{
float newStartAngle = startAngle;
if (newStartAngle < 0)
newStartAngle = (2 * piFloat) + fmodf(newStartAngle, -(2 * piFloat));
else
newStartAngle = fmodf(newStartAngle, 2 * piFloat);
float delta = newStartAngle - startAngle;
startAngle = newStartAngle;
endAngle = endAngle + delta;
ASSERT(newStartAngle >= 0 && (newStartAngle < 2 * piFloat || WTF::areEssentiallyEqual<float>(newStartAngle, 2 * piFloat)));
if (anticlockwise && startAngle - endAngle >= 2 * piFloat)
endAngle = startAngle - 2 * piFloat;
else if (!anticlockwise && endAngle - startAngle >= 2 * piFloat)
endAngle = startAngle + 2 * piFloat;
}
ExceptionOr<void> CanvasPath::arc(float x, float y, float radius, float startAngle, float endAngle, bool anticlockwise)
{
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radius) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
return { };
if (radius < 0)
return Exception { IndexSizeError };
if (!hasInvertibleTransform())
return { };
normalizeAngles(startAngle, endAngle, anticlockwise);
if (!radius || startAngle == endAngle) {
// The arc is empty but we still need to draw the connecting line.
lineTo(x + radius * cosf(startAngle), y + radius * sinf(startAngle));
return { };
}
m_path.addArc(FloatPoint(x, y), radius, startAngle, endAngle, anticlockwise ? RotationDirection::Counterclockwise : RotationDirection::Clockwise);
return { };
}
ExceptionOr<void> CanvasPath::ellipse(float x, float y, float radiusX, float radiusY, float rotation, float startAngle, float endAngle, bool anticlockwise)
{
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(radiusX) || !std::isfinite(radiusY) || !std::isfinite(rotation) || !std::isfinite(startAngle) || !std::isfinite(endAngle))
return { };
if (radiusX < 0 || radiusY < 0)
return Exception { IndexSizeError };
if (!hasInvertibleTransform())
return { };
normalizeAngles(startAngle, endAngle, anticlockwise);
if ((!radiusX && !radiusY) || startAngle == endAngle) {
AffineTransform transform;
transform.translate(x, y).rotate(rad2deg(rotation));
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
return { };
}
if (!radiusX || !radiusY) {
AffineTransform transform;
transform.translate(x, y).rotate(rad2deg(rotation));
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(startAngle), radiusY * sinf(startAngle))));
if (!anticlockwise) {
for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat) + piOverTwoFloat; angle < endAngle; angle += piOverTwoFloat)
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
} else {
for (float angle = startAngle - fmodf(startAngle, piOverTwoFloat); angle > endAngle; angle -= piOverTwoFloat)
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(angle), radiusY * sinf(angle))));
}
lineTo(transform.mapPoint(FloatPoint(radiusX * cosf(endAngle), radiusY * sinf(endAngle))));
return { };
}
m_path.addEllipse(FloatPoint(x, y), radiusX, radiusY, rotation, startAngle, endAngle, anticlockwise ? RotationDirection::Counterclockwise : RotationDirection::Clockwise);
return { };
}
void CanvasPath::rect(float x, float y, float width, float height)
{
if (!hasInvertibleTransform())
return;
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
return;
if (!width && !height) {
m_path.moveTo(FloatPoint(x, y));
return;
}
m_path.addRect(FloatRect(x, y, width, height));
}
ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const RadiusVariant& radii)
{
return roundRect(x, y, width, height, std::span(&radii, 1));
}
ExceptionOr<void> CanvasPath::roundRect(float x, float y, float width, float height, const std::span<const RadiusVariant>& radii)
{
// Based on Nov 5th 2021 version of https://html.spec.whatwg.org/multipage/canvas.html#dom-context-2d-roundrect
// 1. If any of x, y, w, or h are infinite or NaN, then return.
if (!std::isfinite(x) || !std::isfinite(y) || !std::isfinite(width) || !std::isfinite(height))
return { };
// 2. If radii is not a list of size one, two, three, or four, then throw a RangeError.
if (radii.size() > 4 || radii.empty())
return Exception { RangeError, makeString("radii must contain at least 1 element, up to 4. It contained ", radii.size(), " elements.") };
// 3. Let normalizedRadii be an empty list.
Vector<FloatPoint, 4> normalizedRadii;
// 4. For each radius of radii:
for (auto& radius : radii) {
auto shouldReturnSilently = false;
auto exception = WTF::switchOn(radius,
// 4.1 If radius is a DOMPointInit:
[&normalizedRadii, &shouldReturnSilently](DOMPointInit point) -> ExceptionOr<void> {
// 4.1.1 If radius["x"] or radius["y"] is infinite or NaN, then return.
if (!std::isfinite(point.x) || !std::isfinite(point.y)) {
shouldReturnSilently = true;
return { };
}
// 4.1.2 If radius["x"] or radius["y"] is negative, then throw a RangeError.
if (point.x < 0 || point.y < 0)
return Exception { RangeError, makeString("radius point coordinates must be positive") };
// 4.1.3 Otherwise, append radius to normalizedRadii.
normalizedRadii.append({ static_cast<float>(point.x), static_cast<float>(point.y) });
return { };
},
// 4.2 If radius is a unrestricted double:
[&normalizedRadii, &shouldReturnSilently](double radiusValue) -> ExceptionOr<void> {
// 4.2.1 If radius is infinite or NaN, then return.
if (!std::isfinite(radiusValue)) {
shouldReturnSilently = true;
return { };
}
// 4.2.2 If radius is negative, then throw a RangeError.
if (radiusValue < 0)
return Exception { RangeError, makeString("radius value must be positive") };
// 4.2.3 Otherwise append «[ "x" → radius, "y" → radius ]» to normalizedRadii.
normalizedRadii.append({ static_cast<float>(radiusValue), static_cast<float>(radiusValue) });
return { };
}
);
if (exception.hasException() || shouldReturnSilently)
return exception;
}
// Degenerate case, fall back to regular rect.
// We do not do this before parsing the radii in order to make sure the Exceptions can be raised.
if (!width || !height) {
rect(x, y, width, height);
return { };
}
// 5. Let upperLeft, upperRight, lowerRight, and lowerLeft be null.
FloatPoint upperLeft, upperRight, lowerRight, lowerLeft;
switch (normalizedRadii.size()) {
case 4:
// 6. If normalizedRadii's size is 4, then set upperLeft to normalizedRadii[0], set upperRight to normalizedRadii[1], set lowerRight to normalizedRadii[2], and set lowerLeft to normalizedRadii[3].
upperLeft = normalizedRadii[0];
upperRight = normalizedRadii[1];
lowerRight = normalizedRadii[2];
lowerLeft = normalizedRadii[3];
break;
case 3:
// 7. If normalizedRadii's size is 3, then set upperLeft to normalizedRadii[0], set upperRight and lowerLeft to normalizedRadii[1], and set lowerRight to normalizedRadii[2].
upperLeft = normalizedRadii[0];
upperRight = normalizedRadii[1];
lowerRight = normalizedRadii[2];
lowerLeft = normalizedRadii[1];
break;
case 2:
// 8. If normalizedRadii's size is 2, then set upperLeft and lowerRight to normalizedRadii[0] and set upperRight and lowerLeft to normalizedRadii[1].
upperLeft = normalizedRadii[0];
upperRight = normalizedRadii[1];
lowerRight = normalizedRadii[0];
lowerLeft = normalizedRadii[1];
break;
case 1:
// 9. If normalizedRadii's size is 1, then set upperLeft, upperRight, lowerRight, and lowerLeft to normalizedRadii[0].
upperLeft = normalizedRadii[0];
upperRight = normalizedRadii[0];
lowerRight = normalizedRadii[0];
lowerLeft = normalizedRadii[0];
break;
default:
RELEASE_ASSERT_NOT_REACHED();
break;
}
// Must handle clockwise and counter-clockwise directions properly so path winding works correctly.
bool clockwise = true;
if (width < 0) {
clockwise = !clockwise;
width = std::abs(width);
x -= width;
std::swap(upperLeft, upperRight);
std::swap(lowerLeft, lowerRight);
}
if (height < 0) {
clockwise = !clockwise;
height = std::abs(height);
y -= height;
std::swap(upperLeft, lowerLeft);
std::swap(upperRight, lowerRight);
}
// 10. Corner curves must not overlap. Scale all radii to prevent this:
// 10.1 Let top be upperLeft["x"] + upperRight["x"].
auto top = upperLeft.x() + upperRight.x();
// 10.2 Let right be upperRight["y"] + lowerRight["y"].
auto right = upperRight.y() + lowerRight.y();
// 10.3 Let bottom be lowerRight["x"] + lowerLeft["x"].
auto bottom = lowerRight.x() + lowerLeft.x();
// 10.4 Let left be upperLeft["y"] + lowerLeft["y"].
auto left = upperLeft.y() + lowerLeft.y();
// 10.5 Let scale be the minimum value of the ratios w / top, h / right, w / bottom, h / left.
auto scale = std::min({ width / top, height / right, width / bottom, height / left });
// 10.6 If scale is less than 1, then set the x and y members of upperLeft, upperRight, lowerLeft, and lowerRight to their current values multiplied by scale.
if (scale < 1) {
upperLeft.scale(scale);
upperRight.scale(scale);
lowerLeft.scale(scale);
lowerRight.scale(scale);
}
// 11. Create a new subpath:
m_path.moveTo({ x + upperLeft.x(), y });
// The 11.x clockwise substeps are handled by Path::addRoundedRect directly.
if (clockwise) {
m_path.addRoundedRect({ FloatRect(x, y, width, height),
{ static_cast<float>(upperLeft.x()), static_cast<float>(upperLeft.y()) },
{ static_cast<float>(upperRight.x()), static_cast<float>(upperRight.y()) },
{ static_cast<float>(lowerLeft.x()), static_cast<float>(lowerLeft.y()) },
{ static_cast<float>(lowerRight.x()), static_cast<float>(lowerRight.y()) },
});
} else {
// Top Left corner
if (upperLeft.x() > 0 || upperLeft.y() > 0) {
m_path.addBezierCurveTo({ x + upperLeft.x() * m_path.circleControlPoint(), y },
{ x, y + upperLeft.y() * m_path.circleControlPoint() },
{ x, y + upperLeft.y() });
}
// Left edge
m_path.addLineTo({ x, y + height - lowerLeft.y() });
// Bottom left corner
if (lowerLeft.x() > 0 || lowerLeft.y() > 0) {
m_path.addBezierCurveTo({ x, y + height - lowerLeft.y() * m_path.circleControlPoint() },
{ x + lowerLeft.x() * m_path.circleControlPoint(), y + height },
{ x + lowerLeft.x(), y + height });
}
// Bottom edge
m_path.addLineTo({ x + width - lowerRight.x(), y + height });
// Bottom right corner
if (lowerRight.x() > 0 || lowerRight.y() > 0) {
m_path.addBezierCurveTo({ x + width - lowerRight.x() * m_path.circleControlPoint(), y + height },
{ x + width, y + height - lowerRight.y() * m_path.circleControlPoint() },
{ x + width, y + height - lowerRight.y() });
}
// Right edge
m_path.addLineTo({ x + width, y + upperRight.y() });
// Top right corner
if (upperRight.x() > 0 || upperRight.y() > 0) {
m_path.addBezierCurveTo({ x + width, y + upperRight.y() * m_path.circleControlPoint() },
{ x + width - upperRight.x() * m_path.circleControlPoint(), y },
{ x + width - upperRight.x(), y });
}
// Top edge
m_path.addLineTo({ x + upperLeft.x(), y });
}
// 12. Mark the subpath as closed.
m_path.closeSubpath();
// 13. Create a new subpath with the point (x, y) as the only point in the subpath.
m_path.moveTo({ x, y });
return { };
}
float CanvasPath::currentX() const
{
return m_path.currentPoint().x();
}
float CanvasPath::currentY() const
{
return m_path.currentPoint().y();
}
}
|