1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
|
/*
* Copyright (C) 2018 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "FloatingContext.h"
#include "BlockFormattingState.h"
#include "FloatAvoider.h"
#include "LayoutBox.h"
#include "LayoutBoxGeometry.h"
#include "LayoutContainingBlockChainIterator.h"
#include "LayoutElementBox.h"
#include "RenderStyleInlines.h"
#include "Shape.h"
#include <wtf/IsoMallocInlines.h>
namespace WebCore {
namespace Layout {
WTF_MAKE_ISO_ALLOCATED_IMPL(FloatingContext);
// Finding the top/left position for a new floating(F)
// ____ ____ _____ _______
// | || L2 || | <-----1---->| |
// | ||____|| L3 | | R1 |
// | L1 | |_____| | |
// |____| <-------------2--------->| |
// | |
// |_______|
//
// 1. Compute the initial vertical position for (F) -> (1)
// 2. Find the corresponding floating pair (L3-R1)
// 3. Align (F) horizontally with (L3-R1) depending whether (F) is left/right positioned
// 4. Intersect (F) with (L3-R1)
// 5. If (F) does not fit, find the next floating pair (L1-R1)
// 6. Repeat until either (F) fits/no more floats.
// Note that all coordinates are in the coordinate system of the formatting root.
// The formatting root here is always the one that establishes the floating context (see inherited floating context).
// (It simply means that the float box's formatting root is not necessarily the same as the FormattingContext's root.)
class Iterator;
class FloatPair {
public:
struct LeftRightIndex {
bool isEmpty() const { return !left && !right;}
std::optional<unsigned> left;
std::optional<unsigned> right;
};
bool isEmpty() const { return m_floatPair.isEmpty(); }
const FloatingState::FloatItem* left() const;
const FloatingState::FloatItem* right() const;
bool intersects(const FloatAvoider&) const;
PositionInContextRoot verticalConstraint() const { return m_verticalPosition; }
struct HorizontalConstraints {
std::optional<PositionInContextRoot> left;
std::optional<PositionInContextRoot> right;
};
HorizontalConstraints horizontalConstraints() const;
PositionInContextRoot bottom() const;
LeftRightIndex operator*() const { return m_floatPair; };
bool operator==(const FloatPair&) const;
private:
friend class Iterator;
FloatPair(const FloatingState::FloatList&);
const FloatingState::FloatList& m_floats;
LeftRightIndex m_floatPair;
PositionInContextRoot m_verticalPosition;
};
class Iterator {
public:
Iterator(const FloatingState::FloatList&, std::optional<PositionInContextRoot> verticalPosition);
const FloatPair& operator*() const { return m_current; }
Iterator& operator++();
bool operator==(const Iterator&) const;
private:
void set(PositionInContextRoot verticalPosition);
const FloatingState::FloatList& m_floats;
FloatPair m_current;
};
static Iterator begin(const FloatingState::FloatList& floats, PositionInContextRoot initialVerticalPosition)
{
// Start with the inner-most floating pair for the initial vertical position.
return Iterator(floats, initialVerticalPosition);
}
static Iterator end(const FloatingState::FloatList& floats)
{
return Iterator(floats, { });
}
#if ASSERT_ENABLED
static bool areFloatsHorizontallySorted(const FloatingState& floatingState)
{
auto& floats = floatingState.floats();
auto rightEdgeOfLeftFloats = LayoutUnit::min();
auto leftEdgeOfRightFloats = LayoutUnit::max();
std::optional<LayoutUnit> leftBottom;
std::optional<LayoutUnit> rightBottom;
for (auto& floatItem : floats) {
if (floatItem.isLeftPositioned()) {
auto rightEdge = floatItem.absoluteRectWithMargin().right();
if (rightEdge < rightEdgeOfLeftFloats) {
if (leftBottom && floatItem.absoluteRectWithMargin().top() < *leftBottom)
return false;
}
leftBottom = floatItem.absoluteRectWithMargin().bottom();
rightEdgeOfLeftFloats = rightEdge;
} else {
auto leftEdge = floatItem.absoluteRectWithMargin().left();
if (leftEdge > leftEdgeOfRightFloats) {
if (rightBottom && floatItem.absoluteRectWithMargin().top() < *rightBottom)
return false;
}
rightBottom = floatItem.absoluteRectWithMargin().bottom();
leftEdgeOfRightFloats = leftEdge;
}
}
return true;
}
#endif
static FloatPair::LeftRightIndex findAvailablePosition(FloatAvoider& floatAvoider, const FloatingState::FloatList& floats)
{
std::optional<PositionInContextRoot> bottomMost;
std::optional<FloatPair::LeftRightIndex> innerMostLeftAndRight;
auto end = Layout::end(floats);
for (auto iterator = begin(floats, { floatAvoider.top() }); iterator != end; ++iterator) {
ASSERT(!(*iterator).isEmpty());
auto leftRightFloatPair = *iterator;
innerMostLeftAndRight = innerMostLeftAndRight.value_or(*leftRightFloatPair);
// Move the box horizontally so that it either
// 1. aligns with the current floating pair
// 2. or with the containing block's content box if there's no float to align with at this vertical position.
auto leftRightEdge = leftRightFloatPair.horizontalConstraints();
if (auto horizontalConstraint = floatAvoider.isLeftAligned() ? leftRightEdge.left : leftRightEdge.right)
floatAvoider.setHorizontalPosition(*horizontalConstraint);
else
floatAvoider.resetHorizontalPosition();
floatAvoider.setVerticalPosition(leftRightFloatPair.verticalConstraint());
// Ensure that the float avoider
// 1. avoids floats on both sides
// 2. does not overflow its containing block if the horizontal position is constrained by other floats
// (i.e. a float avoider may overflow its containing block just fine unless this overflow is the result of getting it pushed by other floats on this vertical position -out of available space)
auto isConstrainedByOtherFloats = (floatAvoider.isLeftAligned() && leftRightEdge.left) || (!floatAvoider.isLeftAligned() && leftRightEdge.right);
auto overflowsContainingBlockWithConstraints = isConstrainedByOtherFloats && floatAvoider.overflowsContainingBlock();
if (!overflowsContainingBlockWithConstraints && !leftRightFloatPair.intersects(floatAvoider))
return *innerMostLeftAndRight;
bottomMost = leftRightFloatPair.bottom();
// Move to the next floating pair.
}
// The candidate box is already below of all the floats.
if (!bottomMost)
return { };
// Passed all the floats and still does not fit? Push it below the last float.
floatAvoider.setVerticalPosition(*bottomMost);
floatAvoider.resetHorizontalPosition();
ASSERT(innerMostLeftAndRight);
return *innerMostLeftAndRight;
}
struct FloatingContext::AbsoluteCoordinateValuesForFloatAvoider {
LayoutPoint topLeft;
LayoutPoint containingBlockTopLeft;
HorizontalEdges containingBlockContentBox;
};
FloatingContext::FloatingContext(const FormattingContext& formattingContext, const FloatingState& floatingState)
: m_formattingContext(formattingContext)
, m_floatingState(floatingState)
{
}
LayoutPoint FloatingContext::positionForFloat(const Box& layoutBox, const BoxGeometry& boxGeometry, const HorizontalConstraints& horizontalConstraints) const
{
ASSERT(layoutBox.isFloatingPositioned());
ASSERT(areFloatsHorizontallySorted(m_floatingState));
auto borderBoxTopLeft = BoxGeometry::borderBoxTopLeft(boxGeometry);
if (isEmpty()) {
auto alignWithContainingBlock = [&]() -> Position {
// If there is no floating to align with, push the box to the left/right edge of its containing block's content box.
if (isFloatingCandidateLeftPositionedInFloatingState(layoutBox))
return { horizontalConstraints.logicalLeft + boxGeometry.marginStart() };
return { horizontalConstraints.logicalRight() - boxGeometry.marginEnd() - boxGeometry.borderBoxWidth() };
};
// No float box on the context yet -> align it with the containing block's left/right edge.
return { alignWithContainingBlock(), borderBoxTopLeft.y() };
}
// Find the top most position where the float box fits.
ASSERT(!isEmpty());
auto absoluteCoordinates = this->absoluteCoordinates(layoutBox, borderBoxTopLeft);
auto absoluteTopLeft = absoluteCoordinates.topLeft;
auto verticalPositionCandidate = absoluteTopLeft.y();
if (layoutBox.hasFloatClear()) {
// The vertical position candidate needs to clear the existing floats in this context.
auto floatBottom = [&]() -> std::optional<LayoutUnit> {
switch (clearInFloatingState(layoutBox)) {
case Clear::Left:
return leftBottom();
case Clear::Right:
return rightBottom();
case Clear::Both:
return bottom();
default:
ASSERT_NOT_REACHED();
}
return { };
};
if (auto bottomWithClear = floatBottom())
verticalPositionCandidate = std::max(borderBoxTopLeft.y(), *bottomWithClear) + boxGeometry.marginBefore();
} else {
// Incoming float cannot be placed higher than existing floats (margin box of the last float).
// Take the static position (where the box would go if it wasn't floating) and adjust it with the last float.
auto previousFloatAbsoluteTop = floatingState().floats().last().absoluteRectWithMargin().top();
if (verticalPositionCandidate - boxGeometry.marginBefore() < previousFloatAbsoluteTop)
verticalPositionCandidate = previousFloatAbsoluteTop + boxGeometry.marginBefore();
}
absoluteTopLeft.setY(verticalPositionCandidate);
auto margins = Edges { { boxGeometry.marginStart(), boxGeometry.marginEnd() }, { boxGeometry.marginBefore(), boxGeometry.marginAfter() } };
auto floatBox = FloatAvoider { absoluteTopLeft, boxGeometry.borderBoxWidth(), margins, absoluteCoordinates.containingBlockContentBox, true, isFloatingCandidateLeftPositionedInFloatingState(layoutBox) };
findAvailablePosition(floatBox, m_floatingState.floats());
// Convert box coordinates from formatting root back to containing block.
auto containingBlockTopLeft = absoluteCoordinates.containingBlockTopLeft;
return { floatBox.left() + margins.horizontal.left - containingBlockTopLeft.x(), floatBox.top() + margins.vertical.top - containingBlockTopLeft.y() };
}
LayoutPoint FloatingContext::positionForNonFloatingFloatAvoider(const Box& layoutBox, const BoxGeometry& boxGeometry) const
{
ASSERT(layoutBox.establishesBlockFormattingContext());
ASSERT(!layoutBox.isFloatingPositioned());
ASSERT(!layoutBox.hasFloatClear());
ASSERT(areFloatsHorizontallySorted(m_floatingState));
auto borderBoxTopLeft = BoxGeometry::borderBoxTopLeft(boxGeometry);
if (isEmpty())
return borderBoxTopLeft;
auto absoluteCoordinates = this->absoluteCoordinates(layoutBox, borderBoxTopLeft);
auto margins = Edges { { boxGeometry.marginStart(), boxGeometry.marginEnd() }, { boxGeometry.marginBefore(), boxGeometry.marginAfter() } };
auto floatAvoider = FloatAvoider { absoluteCoordinates.topLeft, boxGeometry.borderBoxWidth(), margins, absoluteCoordinates.containingBlockContentBox, false, layoutBox.style().isLeftToRightDirection() };
findPositionForFormattingContextRoot(floatAvoider);
auto containingBlockTopLeft = absoluteCoordinates.containingBlockTopLeft;
return { floatAvoider.left() - containingBlockTopLeft.x(), floatAvoider.top() - containingBlockTopLeft.y() };
}
std::optional<FloatingContext::PositionWithClearance> FloatingContext::verticalPositionWithClearance(const Box& layoutBox, const BoxGeometry& boxGeometry) const
{
ASSERT(layoutBox.hasFloatClear());
ASSERT(areFloatsHorizontallySorted(m_floatingState));
if (isEmpty())
return { };
auto bottom = [&](auto floatBottom) -> std::optional<PositionWithClearance> {
if (!floatBottom)
return { };
// 9.5.2 Controlling flow next to floats: the 'clear' property
// Then the amount of clearance is set to the greater of:
//
// 1. The amount necessary to place the border edge of the block even with the bottom outer edge of the lowest float that is to be cleared.
// 2. The amount necessary to place the top border edge of the block at its hypothetical position.
auto logicalTopRelativeToFloatingStateRoot = mapTopLeftToFloatingStateRoot(layoutBox, BoxGeometry::borderBoxTopLeft(boxGeometry)).y();
auto clearance = *floatBottom - logicalTopRelativeToFloatingStateRoot;
if (clearance <= 0)
return { };
if (layoutBox.isBlockLevelBox()) {
// Clearance inhibits margin collapsing in block formatting context.
if (auto* previousInFlowSibling = layoutBox.previousInFlowSibling()) {
// Does this box with clearance actually collapse its margin before with the previous inflow box's margin after?
auto& formattingState = downcast<BlockFormattingState>(formattingContext().formattingState());
auto verticalMargin = formattingState.usedVerticalMargin(layoutBox);
if (verticalMargin.collapsedValues.before) {
auto previousVerticalMarginAfter = formattingContext().geometryForBox(*previousInFlowSibling).marginAfter();
auto collapsedMargin = *verticalMargin.collapsedValues.before;
auto nonCollapsedMargin = previousVerticalMarginAfter + marginBefore(verticalMargin);
auto marginDifference = nonCollapsedMargin - collapsedMargin;
// Move the box to the position where it would be with non-collapsed margins.
logicalTopRelativeToFloatingStateRoot += marginDifference;
// Having negative clearance is also normal. It just means that the box with the non-collapsed margins is now lower than it needs to be.
clearance -= marginDifference;
}
}
}
// Now adjust the box's position with the clearance.
logicalTopRelativeToFloatingStateRoot += clearance;
ASSERT(*floatBottom == logicalTopRelativeToFloatingStateRoot);
// The return vertical position needs to be in the containing block's coordinate system.
auto& containingBlock = FormattingContext::containingBlock(layoutBox);
if (&containingBlock == &m_floatingState.root())
return PositionWithClearance { logicalTopRelativeToFloatingStateRoot, clearance };
auto containingBlockTopLeft = BoxGeometry::borderBoxTopLeft(formattingContext().geometryForBox(containingBlock, FormattingContext::EscapeReason::FloatBoxIsAlwaysRelativeToFloatStateRoot));
auto containingBlockRootRelativeTop = mapTopLeftToFloatingStateRoot(containingBlock, containingBlockTopLeft).y();
return PositionWithClearance { logicalTopRelativeToFloatingStateRoot - containingBlockRootRelativeTop, clearance };
};
auto clear = clearInFloatingState(layoutBox);
if (clear == Clear::Left)
return bottom(leftBottom());
if (clear == Clear::Right)
return bottom(rightBottom());
if (clear == Clear::Both)
return bottom(this->bottom());
ASSERT_NOT_REACHED();
return { };
}
std::optional<LayoutUnit> FloatingContext::bottom(Clear type) const
{
// TODO: Currently this is only called once for each formatting context root with floats per layout.
// Cache the value if we end up calling it more frequently (and update it at append/remove).
auto bottom = std::optional<LayoutUnit> { };
for (auto& floatItem : floatingState().floats()) {
if ((type == Clear::Left && !floatItem.isLeftPositioned())
|| (type == Clear::Right && floatItem.isLeftPositioned()))
continue;
bottom = !bottom ? floatItem.absoluteRectWithMargin().bottom() : std::max(*bottom, floatItem.absoluteRectWithMargin().bottom());
}
return bottom;
}
std::optional<LayoutUnit> FloatingContext::top() const
{
auto top = std::optional<LayoutUnit> { };
for (auto& floatItem : floatingState().floats())
top = !top ? floatItem.absoluteRectWithMargin().top() : std::min(*top, floatItem.absoluteRectWithMargin().top());
return top;
}
FloatingContext::Constraints FloatingContext::constraints(LayoutUnit candidateTop, LayoutUnit candidateBottom, MayBeAboveLastFloat mayBeAboveLastFloat) const
{
if (isEmpty())
return { };
// 1. Convert vertical position if this floating context is inherited.
// 2. Find the inner left/right floats at candidateTop/candidateBottom. Note when MayBeAboveLastFloat is 'no', we can just stop at the inner most (last) float (block vs. inline case).
// 3. Convert left/right positions back to formattingContextRoot's cooridnate system.
auto& floatingState = this->floatingState();
auto coordinateMappingIsRequired = &floatingState.root() != &root();
auto adjustedCandidateTop = candidateTop;
LayoutSize adjustingDelta;
if (coordinateMappingIsRequired) {
auto adjustedCandidatePosition = mapPointFromFormattingContextRootToFloatingStateRoot({ 0, candidateTop });
adjustedCandidateTop = adjustedCandidatePosition.y;
adjustingDelta = { adjustedCandidatePosition.x, adjustedCandidateTop - candidateTop };
}
auto adjustedCandidateBottom = adjustedCandidateTop + (candidateBottom - candidateTop);
auto candidateHeight = adjustedCandidateBottom - adjustedCandidateTop;
auto contains = [&] (auto& floatBoxRect) {
if (floatBoxRect.isEmpty())
return false;
if (!candidateHeight)
return floatBoxRect.top() <= adjustedCandidateTop && floatBoxRect.bottom() > adjustedCandidateTop;
return floatBoxRect.top() < adjustedCandidateBottom && floatBoxRect.bottom() > adjustedCandidateTop;
};
auto computeFloatEdgeAndBottom = [&](auto& floatItem) -> std::optional<std::pair<LayoutUnit, LayoutUnit>> {
auto marginRect = floatItem.absoluteRectWithMargin();
if (!contains(marginRect))
return { };
if (auto* shape = floatItem.shape()) {
// Shapes are relative to the border box.
auto borderRect = floatItem.absoluteBorderBoxRect();
auto positionInShape = adjustedCandidateTop - borderRect.top();
if (!shape->lineOverlapsShapeMarginBounds(positionInShape, candidateHeight))
return { };
auto segment = shape->getExcludedInterval(positionInShape, candidateHeight);
if (!segment.isValid)
return { };
// Bottom is used to decide the next line top if nothing fits. With shape we'll just sample one pixel down.
// FIXME: This is potentially slow.
auto bottom = adjustedCandidateTop + 1_lu;
if (floatItem.isLeftPositioned()) {
auto shapeRight = borderRect.left() + LayoutUnit { segment.logicalRight };
// Shape can't extend beyond the margin box.
return std::pair { std::min(shapeRight, marginRect.right()), bottom };
}
auto shapeLeft = borderRect.left() + LayoutUnit { segment.logicalLeft };
return std::pair { std::max(shapeLeft, marginRect.left()), bottom };
}
auto edge = floatItem.isLeftPositioned() ? marginRect.right() : marginRect.left();
return std::pair { edge, marginRect.bottom() };
};
auto constraints = Constraints { };
if (mayBeAboveLastFloat == MayBeAboveLastFloat::No) {
for (auto& floatItem : makeReversedRange(floatingState.floats())) {
if ((constraints.left && floatItem.isLeftPositioned()) || (constraints.right && !floatItem.isLeftPositioned()))
continue;
auto edgeAndBottom = computeFloatEdgeAndBottom(floatItem);
if (!edgeAndBottom)
continue;
auto [edge, bottom] = *edgeAndBottom;
if (floatItem.isLeftPositioned())
constraints.left = PointInContextRoot { edge, bottom };
else
constraints.right = PointInContextRoot { edge, bottom };
if ((constraints.left && constraints.right)
|| (constraints.left && !floatingState.hasRightPositioned())
|| (constraints.right && !floatingState.hasLeftPositioned()))
break;
}
} else {
for (auto& floatItem : makeReversedRange(floatingState.floats())) {
auto edgeAndBottom = computeFloatEdgeAndBottom(floatItem);
if (!edgeAndBottom)
continue;
auto [edge, bottom] = *edgeAndBottom;
if (floatItem.isLeftPositioned()) {
if (!constraints.left || constraints.left->x < edge)
constraints.left = PointInContextRoot { edge, bottom };
} else {
if (!constraints.right || constraints.right->x > edge)
constraints.right = PointInContextRoot { edge, bottom };
}
// FIXME: Bail out when floats are way above.
}
}
if (coordinateMappingIsRequired) {
if (constraints.left)
constraints.left->move(-adjustingDelta);
if (constraints.right)
constraints.right->move(-adjustingDelta);
}
if (floatingState.isLeftToRightDirection() != root().style().isLeftToRightDirection()) {
// FIXME: Move it under coordinateMappingIsRequired when the integration codepath starts initiating the floating state with the
// correct containing block (i.e. when the float comes from the parent BFC).
// Flip to logical in inline direction.
auto logicalConstraints = Constraints { };
auto borderBoxWidth = formattingContext().geometryForBox(root(), FormattingContext::EscapeReason::FloatBoxIsAlwaysRelativeToFloatStateRoot).borderBoxWidth();
if (constraints.left)
logicalConstraints.right = PointInContextRoot { borderBoxWidth - constraints.left->x, constraints.left->y };
if (constraints.right)
logicalConstraints.left = PointInContextRoot { borderBoxWidth - constraints.right->x, constraints.right->y };
constraints = logicalConstraints;
}
return constraints;
}
FloatingState::FloatItem FloatingContext::toFloatItem(const Box& floatBox, const BoxGeometry& boxGeometry) const
{
auto borderBoxTopLeft = BoxGeometry::borderBoxTopLeft(boxGeometry);
auto absoluteBoxGeometry = BoxGeometry { boxGeometry };
absoluteBoxGeometry.setLogicalTopLeft(mapTopLeftToFloatingStateRoot(floatBox, borderBoxTopLeft));
return { floatBox, isFloatingCandidateLeftPositionedInFloatingState(floatBox) ? FloatingState::FloatItem::Position::Left : FloatingState::FloatItem::Position::Right, absoluteBoxGeometry, borderBoxTopLeft };
}
void FloatingContext::findPositionForFormattingContextRoot(FloatAvoider& floatAvoider) const
{
// A non-floating formatting root's initial vertical position is its static position.
// It means that such boxes can end up vertically placed in-between existing floats (which is
// never the case for floats, since they cannot be placed above existing floats).
// ____ ____
// | || F1 |
// | L1 | ----
// | | ________
// ---- | R1 |
// --------
// Document order: 1. float: left (L1) 2. float: right (R1) 3. formatting root (F1)
//
// 1. Probe for available placement at initial position (note it runs a backward probing algorithm at a specific vertical position)
// 2. Check if there's any intersecing float below (forward seaching)
// 3. Align the box with the intersected float and probe for placement again (#1).
auto& floats = m_floatingState.floats();
while (true) {
auto innerMostLeftAndRight = findAvailablePosition(floatAvoider, floats);
if (innerMostLeftAndRight.isEmpty())
return;
auto overlappingFloatBox = [&floats](auto startFloatIndex, auto& floatAvoider) -> const FloatingState::FloatItem* {
for (auto i = startFloatIndex; i < floats.size(); ++i) {
auto& floatBox = floats[i];
auto intersects = [&] {
auto floatingRect = floatBox.absoluteRectWithMargin();
if (floatAvoider.left() >= floatingRect.right() || floatAvoider.right() <= floatingRect.left())
return false;
return floatAvoider.top() >= floatingRect.top() && floatAvoider.top() < floatingRect.bottom();
}();
if (intersects)
return &floatBox;
}
return nullptr;
};
auto startIndex = std::max(innerMostLeftAndRight.left.value_or(0), innerMostLeftAndRight.right.value_or(0)) + 1;
auto* intersectedFloatBox = overlappingFloatBox(startIndex, floatAvoider);
if (!intersectedFloatBox)
return;
floatAvoider.setVerticalPosition({ intersectedFloatBox->absoluteRectWithMargin().top() });
}
}
FloatingContext::AbsoluteCoordinateValuesForFloatAvoider FloatingContext::absoluteCoordinates(const Box& floatAvoider, LayoutPoint borderBoxTopLeft) const
{
auto& containingBlock = FormattingContext::containingBlock(floatAvoider);
auto& containingBlockGeometry = formattingContext().geometryForBox(containingBlock, FormattingContext::EscapeReason::FloatBoxIsAlwaysRelativeToFloatStateRoot);
auto absoluteTopLeft = mapTopLeftToFloatingStateRoot(floatAvoider, borderBoxTopLeft);
if (&containingBlock == &floatingState().root())
return { absoluteTopLeft, { }, { containingBlockGeometry.contentBoxLeft(), containingBlockGeometry.contentBoxRight() } };
auto containingBlockAbsoluteTopLeft = mapTopLeftToFloatingStateRoot(containingBlock, BoxGeometry::borderBoxTopLeft(containingBlockGeometry));
return { absoluteTopLeft, containingBlockAbsoluteTopLeft, { containingBlockAbsoluteTopLeft.x() + containingBlockGeometry.contentBoxLeft(), containingBlockAbsoluteTopLeft.x() + containingBlockGeometry.contentBoxRight() } };
}
LayoutPoint FloatingContext::mapTopLeftToFloatingStateRoot(const Box& floatBox, LayoutPoint borderBoxTopLeft) const
{
auto& floatingStateRoot = floatingState().root();
for (auto& containingBlock : containingBlockChain(floatBox, floatingStateRoot))
borderBoxTopLeft.moveBy(BoxGeometry::borderBoxTopLeft(formattingContext().geometryForBox(containingBlock, FormattingContext::EscapeReason::FloatBoxIsAlwaysRelativeToFloatStateRoot)));
return borderBoxTopLeft;
}
Point FloatingContext::mapPointFromFormattingContextRootToFloatingStateRoot(Point position) const
{
auto& from = root();
auto& to = floatingState().root();
if (&from == &to)
return position;
auto mappedPosition = position;
for (auto* containingBlock = &from; containingBlock != &to; containingBlock = &FormattingContext::containingBlock(*containingBlock))
mappedPosition.moveBy(BoxGeometry::borderBoxTopLeft(formattingContext().geometryForBox(*containingBlock, FormattingContext::EscapeReason::FloatBoxIsAlwaysRelativeToFloatStateRoot)));
return mappedPosition;
}
bool FloatingContext::isLogicalLeftPositioned(const Box& floatBox) const
{
ASSERT(floatBox.isFloatingPositioned());
// Note that this returns true relative to the root of this FloatingContext and not to the FloatingState
// FloatingState's root may be an ancestor block container with mismatching inline direction.
auto floatingBoxIsInLeftToRightDirection = root().style().isLeftToRightDirection();
auto floatingValue = floatBox.style().floating();
return floatingValue == Float::InlineStart
|| (floatingBoxIsInLeftToRightDirection && floatingValue == Float::Left)
|| (!floatingBoxIsInLeftToRightDirection && floatingValue == Float::Right);
}
bool FloatingContext::isFloatingCandidateLeftPositionedInFloatingState(const Box& floatBox) const
{
ASSERT(floatBox.isFloatingPositioned());
// A floating candidate is logically left positioned when:
// - "float: left" in left-to-right floating state
// - "float: inline-start" inline left-to-right floating state
// If the floating state is right-to-left (meaning that the FloatingState is constructed by a BFC root with "direction: rtl")
// visaully left positioned floats are logically right (Note that FloatingContext's direction may not be the same as the FloatingState's direction
// when dealing with inherited FloatingStates across nested IFCs).
auto floatingContextIsLeftToRight = root().style().isLeftToRightDirection();
auto floatingStateIsLeftToRight = m_floatingState.isLeftToRightDirection();
if (floatingContextIsLeftToRight == floatingStateIsLeftToRight)
return isLogicalLeftPositioned(floatBox);
auto floatingValue = floatBox.style().floating();
if (floatingValue == Float::InlineStart)
floatingValue = floatingContextIsLeftToRight ? Float::Left : Float::Right;
else if (floatingValue == Float::InlineEnd)
floatingValue = floatingContextIsLeftToRight ? Float::Right : Float::Left;
return (floatingStateIsLeftToRight && floatingValue == Float::Left)
|| (!floatingStateIsLeftToRight && floatingValue == Float::Right);
}
Clear FloatingContext::clearInFloatingState(const Box& clearBox) const
{
// See isFloatingCandidateLeftPositionedInFloatingState for details.
ASSERT(clearBox.hasFloatClear());
auto clearBoxIsInLeftToRightDirection = root().style().isLeftToRightDirection();
auto clearValue = clearBox.style().clear();
if (clearValue == Clear::Both)
return clearValue;
if (clearValue == Clear::InlineStart)
clearValue = clearBoxIsInLeftToRightDirection ? Clear::Left : Clear::Right;
else if (clearValue == Clear::InlineEnd)
clearValue = clearBoxIsInLeftToRightDirection ? Clear::Right : Clear::Left;
auto floatsAreInLeftToRightDirection = m_floatingState.isLeftToRightDirection();
return (floatsAreInLeftToRightDirection && clearValue == Clear::Left)
|| (!floatsAreInLeftToRightDirection && clearValue == Clear::Right) ? Clear::Left : Clear::Right;
}
FloatPair::FloatPair(const FloatingState::FloatList& floats)
: m_floats(floats)
{
}
const FloatingState::FloatItem* FloatPair::left() const
{
if (!m_floatPair.left)
return nullptr;
ASSERT(m_floats[*m_floatPair.left].isLeftPositioned());
return &m_floats[*m_floatPair.left];
}
const FloatingState::FloatItem* FloatPair::right() const
{
if (!m_floatPair.right)
return nullptr;
ASSERT(!m_floats[*m_floatPair.right].isLeftPositioned());
return &m_floats[*m_floatPair.right];
}
bool FloatPair::intersects(const FloatAvoider& floatAvoider) const
{
auto intersects = [&](auto* floating) {
if (!floating)
return false;
auto floatingRect = floating->absoluteRectWithMargin();
if (floatAvoider.left() >= floatingRect.right() || floatAvoider.right() <= floatingRect.left())
return false;
return floatAvoider.top() >= floatingRect.top() && floatAvoider.top() < floatingRect.bottom();
};
ASSERT(!m_floatPair.isEmpty());
return intersects(left()) || intersects(right());
}
bool FloatPair::operator ==(const FloatPair& other) const
{
return m_floatPair.left == other.m_floatPair.left && m_floatPair.right == other.m_floatPair.right;
}
FloatPair::HorizontalConstraints FloatPair::horizontalConstraints() const
{
std::optional<PositionInContextRoot> leftEdge;
std::optional<PositionInContextRoot> rightEdge;
if (left())
leftEdge = PositionInContextRoot { left()->absoluteRectWithMargin().right() };
if (right())
rightEdge = PositionInContextRoot { right()->absoluteRectWithMargin().left() };
return { leftEdge, rightEdge };
}
PositionInContextRoot FloatPair::bottom() const
{
auto* left = this->left();
auto* right = this->right();
ASSERT(left || right);
auto leftBottom = left ? std::optional<PositionInContextRoot>(PositionInContextRoot { left->absoluteRectWithMargin().bottom() }) : std::nullopt;
auto rightBottom = right ? std::optional<PositionInContextRoot>(PositionInContextRoot { right->absoluteRectWithMargin().bottom() }) : std::nullopt;
if (leftBottom && rightBottom)
return std::max(*leftBottom, *rightBottom);
if (leftBottom)
return *leftBottom;
return *rightBottom;
}
Iterator::Iterator(const FloatingState::FloatList& floats, std::optional<PositionInContextRoot> verticalPosition)
: m_floats(floats)
, m_current(floats)
{
if (verticalPosition)
set(*verticalPosition);
}
inline static std::optional<unsigned> previousFloatingIndex(Float floatingType, const FloatingState::FloatList& floats, unsigned currentIndex)
{
RELEASE_ASSERT(currentIndex <= floats.size());
while (currentIndex) {
auto& floating = floats[--currentIndex];
if ((floatingType == Float::Left && floating.isLeftPositioned()) || (floatingType == Float::Right && !floating.isLeftPositioned()))
return currentIndex;
}
return { };
}
Iterator& Iterator::operator++()
{
if (m_current.isEmpty()) {
ASSERT_NOT_REACHED();
return *this;
}
auto findPreviousFloatingWithLowerBottom = [&](Float floatingType, unsigned currentIndex) -> std::optional<unsigned> {
RELEASE_ASSERT(currentIndex < m_floats.size());
// Last floating? There's certainly no previous floating at this point.
if (!currentIndex)
return { };
auto currentBottom = m_floats[currentIndex].absoluteRectWithMargin().bottom();
std::optional<unsigned> index = currentIndex;
while (true) {
index = previousFloatingIndex(floatingType, m_floats, *index);
if (!index)
return { };
if (m_floats[*index].absoluteRectWithMargin().bottom() > currentBottom)
return index;
}
ASSERT_NOT_REACHED();
return { };
};
// 1. Take the current floating from left and right and check which one's bottom edge is positioned higher (they could be on the same vertical position too).
// The current floats from left and right are considered the inner-most pair for the current vertical position.
// 2. Move away from inner-most pair by picking one of the previous floats in the list(#1)
// Ensure that the new floating's bottom edge is positioned lower than the current one -which essentially means skipping in-between floats that are positioned higher).
// 3. Reset the vertical position and align it with the new left-right pair. These floats are now the inner-most boxes for the current vertical position.
// As the result we have more horizontal space on the current vertical position.
auto leftBottom = m_current.left() ? std::optional<PositionInContextRoot>(m_current.left()->absoluteBottom()) : std::nullopt;
auto rightBottom = m_current.right() ? std::optional<PositionInContextRoot>(m_current.right()->absoluteBottom()) : std::nullopt;
auto updateLeft = (leftBottom == rightBottom) || (!rightBottom || (leftBottom && *leftBottom < *rightBottom));
auto updateRight = (leftBottom == rightBottom) || (!leftBottom || (rightBottom && *leftBottom > *rightBottom));
if (updateLeft) {
ASSERT(m_current.m_floatPair.left);
m_current.m_verticalPosition = *leftBottom;
m_current.m_floatPair.left = findPreviousFloatingWithLowerBottom(Float::Left, *m_current.m_floatPair.left);
}
if (updateRight) {
ASSERT(m_current.m_floatPair.right);
m_current.m_verticalPosition = *rightBottom;
m_current.m_floatPair.right = findPreviousFloatingWithLowerBottom(Float::Right, *m_current.m_floatPair.right);
}
return *this;
}
void Iterator::set(PositionInContextRoot verticalPosition)
{
// Move the iterator to the initial vertical position by starting at the inner-most floating pair (last floats on left/right).
// 1. Check if the inner-most pair covers the vertical position.
// 2. Move outwards from the inner-most pair until the vertical postion intersects.
m_current.m_verticalPosition = verticalPosition;
// No floats at all?
if (m_floats.isEmpty()) {
ASSERT_NOT_REACHED();
m_current.m_floatPair = { };
return;
}
auto findFloatingBelow = [&](Float floatingType) -> std::optional<unsigned> {
ASSERT(!m_floats.isEmpty());
auto index = floatingType == Float::Left ? m_current.m_floatPair.left : m_current.m_floatPair.right;
// Start from the end if we don't have current yet.
index = index.value_or(m_floats.size());
while (true) {
index = previousFloatingIndex(floatingType, m_floats, *index);
if (!index)
return { };
// Is this floating intrusive on this position?
auto rect = m_floats[*index].absoluteRectWithMargin();
if (rect.top() <= verticalPosition && rect.bottom() > verticalPosition)
return index;
}
return { };
};
m_current.m_floatPair.left = findFloatingBelow(Float::Left);
m_current.m_floatPair.right = findFloatingBelow(Float::Right);
ASSERT(!m_current.m_floatPair.left || (*m_current.m_floatPair.left < m_floats.size() && m_floats[*m_current.m_floatPair.left].isLeftPositioned()));
ASSERT(!m_current.m_floatPair.right || (*m_current.m_floatPair.right < m_floats.size() && !m_floats[*m_current.m_floatPair.right].isLeftPositioned()));
}
bool Iterator::operator==(const Iterator& other) const
{
return m_current == other.m_current;
}
}
}
|