1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658
|
/*
Copyright (C) 2012 Nokia Corporation and/or its subsidiary(-ies)
Copyright (C) 2012 Igalia S.L.
Copyright (C) 2011 Google Inc. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public License
along with this library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "TextureMapperShaderProgram.h"
#if USE(TEXTURE_MAPPER_GL)
#include "GLContext.h"
#include "Logging.h"
#include "TextureMapperGL.h"
#include <wtf/text/StringBuilder.h>
namespace WebCore {
static inline bool compositingLogEnabled()
{
#if !LOG_DISABLED
return LogCompositing.state == WTFLogChannelState::On;
#else
return false;
#endif
}
#define STRINGIFY(...) #__VA_ARGS__
#define GLSL_DIRECTIVE(...) "#"#__VA_ARGS__"\n"
#define TEXTURE_SPACE_MATRIX_PRECISION_DIRECTIVE \
GLSL_DIRECTIVE(ifdef GL_FRAGMENT_PRECISION_HIGH) \
GLSL_DIRECTIVE(define TextureSpaceMatrixPrecision highp) \
GLSL_DIRECTIVE(else) \
GLSL_DIRECTIVE(define TextureSpaceMatrixPrecision mediump) \
GLSL_DIRECTIVE(endif)
// Input/output variables definition for OpenGL ES < 3.2.
static const char* vertexTemplateLT320Vars =
TEXTURE_SPACE_MATRIX_PRECISION_DIRECTIVE
STRINGIFY(
precision TextureSpaceMatrixPrecision float;
)
STRINGIFY(
attribute vec4 a_vertex;
varying vec2 v_texCoord;
varying vec2 v_transformedTexCoord;
varying float v_antialias;
varying vec4 v_nonProjectedPosition;
);
static const char* vertexTemplateCommon =
STRINGIFY(
uniform mat4 u_modelViewMatrix;
uniform mat4 u_projectionMatrix;
uniform mat4 u_textureSpaceMatrix;
void noop(vec2 position) { }
vec4 toViewportSpace(vec2 pos) { return u_modelViewMatrix * vec4(pos, 0., 1.); }
// This function relies on the assumption that we get edge triangles with control points,
// a control point being the nearest point to the coordinate that is on the edge.
void applyAntialiasing(vec2 position)
{
const vec2 center = vec2(0.5, 0.5);
const float antialiasInflationDistance = 1.;
// We pass the control point as the zw coordinates of the vertex.
// The control point is the point on the edge closest to the current position.
vec2 controlPoint = a_vertex.zw;
bool isCenter = distance(position, controlPoint) > 0.;
if (isCenter) {
// v_antialias needs to be 0 for the outer edge and 1. for the inner edge.
// We make sure that the varying interpolates between 0 (outer edge), 1 (inner edge) and n > 1 (center).
// Mathematically, v_antialias for the center is:
//
// v_antialias = (viewportSpaceDistance + antialiasInflationDistance) / antialiasInflationDistance
//
// Because we use homogeneous coordinates for the viewport space, we use it for v_antialias, too.
// The denominator is v_nonProjectedPosition.w. So. multiply the numerator by v_nonProjectedPosition.w:
//
// v_antialias = (viewportSpaceDistance + antialiasInflationDistance) * v_nonProjectedPosition.w / antialiasInflationDistance
vec4 controlPointInViewportCoordinates = toViewportSpace(controlPoint);
// Calculate the distance after the reduction to common denominator.
float viewportSpaceDistance = distance(v_nonProjectedPosition.xy * controlPointInViewportCoordinates.w, controlPointInViewportCoordinates.xy * v_nonProjectedPosition.w);
// Calculate the distance multiplied by v_nonProjectedPosition.w.
// FIXME: The case of controlPointInViewportCoordinates.w <= 0.
if (controlPointInViewportCoordinates.w > 0.)
viewportSpaceDistance /= controlPointInViewportCoordinates.w;
v_antialias = (viewportSpaceDistance + antialiasInflationDistance * v_nonProjectedPosition.w) / antialiasInflationDistance;
} else {
vec4 centerInViewportCoordinates = toViewportSpace(center);
// Calculate the 2D direction from the center to the vertex in the viewport space (homogeneous coordinates).
// Subtract after the reduction to common denominator, centerInViewportCoordinates.w * v_nonProjectedPosition.w.
vec2 direction = v_nonProjectedPosition.xy * centerInViewportCoordinates.w - centerInViewportCoordinates.xy * v_nonProjectedPosition.w;
if (length(direction) > 0.) {
float oldDistance = distance(v_nonProjectedPosition.xyz, centerInViewportCoordinates.xyz);
// Move the vertex toward the direction from the center to the vertex.
v_nonProjectedPosition += vec4(normalize(direction) * antialiasInflationDistance * v_nonProjectedPosition.w, 0., 0.);
float newDistance = distance(v_nonProjectedPosition.xyz, centerInViewportCoordinates.xyz);
// Move v_texCoord based on 3D distance inflation ratio.
v_texCoord += normalize(position - center) * (newDistance - oldDistance) / oldDistance;
}
v_antialias = 0.;
}
}
void main(void)
{
vec2 position = a_vertex.xy;
v_texCoord = position;
v_transformedTexCoord = (u_textureSpaceMatrix * vec4(position, 0., 1.)).xy;
v_nonProjectedPosition = toViewportSpace(position);
applyAntialiasingIfNeeded(position);
gl_Position = u_projectionMatrix * v_nonProjectedPosition;
}
);
#define ANTIALIASING_TEX_COORD_DIRECTIVE \
GLSL_DIRECTIVE(if defined(ENABLE_Antialiasing)) \
GLSL_DIRECTIVE(define transformTexCoord fragmentTransformTexCoord) \
GLSL_DIRECTIVE(else) \
GLSL_DIRECTIVE(define transformTexCoord vertexTransformTexCoord) \
GLSL_DIRECTIVE(endif)
#define ENABLE_APPLIER(Name) "#define ENABLE_"#Name"\n#define apply"#Name"IfNeeded apply"#Name"\n"
#define DISABLE_APPLIER(Name) "#define apply"#Name"IfNeeded noop\n"
#define BLUR_CONSTANTS \
GLSL_DIRECTIVE(define GAUSSIAN_KERNEL_HALF_WIDTH 11) \
GLSL_DIRECTIVE(define GAUSSIAN_KERNEL_STEP 0.2)
#define OES_EGL_IMAGE_EXTERNAL_DIRECTIVE \
GLSL_DIRECTIVE(ifdef ENABLE_TextureExternalOES) \
GLSL_DIRECTIVE(extension GL_OES_EGL_image_external : require) \
GLSL_DIRECTIVE(define SamplerExternalOESType samplerExternalOES) \
GLSL_DIRECTIVE(else) \
GLSL_DIRECTIVE(define SamplerExternalOESType sampler2D) \
GLSL_DIRECTIVE(endif)
// The max number of stacked rounded rectangle clips allowed is 10, which is also the
// max number of transforms that we can get. We need 3 components for each rounded
// rectangle so we need 30 components to receive the 10 rectangles.
//
// Keep this is sync with the values defined in ClipStack.h
#define ROUNDED_RECT_CONSTANTS \
GLSL_DIRECTIVE(define ROUNDED_RECT_MAX_RECTS 10) \
GLSL_DIRECTIVE(define ROUNDED_RECT_ARRAY_SIZE 30) \
GLSL_DIRECTIVE(define ROUNDED_RECT_INVERSE_TRANSFORM_ARRAY_SIZE 10)
// Common header for all versions. We define the matrices variables here to keep the precision
// directives scope: the first one applies to the matrices variables and the next one to the
// rest of them.
static const char* fragmentTemplateHeaderCommon =
ANTIALIASING_TEX_COORD_DIRECTIVE
BLUR_CONSTANTS
ROUNDED_RECT_CONSTANTS
OES_EGL_IMAGE_EXTERNAL_DIRECTIVE
TEXTURE_SPACE_MATRIX_PRECISION_DIRECTIVE
STRINGIFY(
precision TextureSpaceMatrixPrecision float;
)
STRINGIFY(
uniform mat4 u_textureSpaceMatrix;
uniform mat4 u_textureColorSpaceMatrix;
)
STRINGIFY(
precision mediump float;
);
// Input/output variables definition for both OpenGL ES < 3.2.
static const char* fragmentTemplateLT320Vars =
STRINGIFY(
varying float v_antialias;
varying vec2 v_texCoord;
varying vec2 v_transformedTexCoord;
varying vec4 v_nonProjectedPosition;
);
static const char* fragmentTemplateCommon =
STRINGIFY(
uniform sampler2D s_sampler;
uniform sampler2D s_samplerY;
uniform sampler2D s_samplerU;
uniform sampler2D s_samplerV;
uniform sampler2D s_samplerA;
uniform sampler2D s_contentTexture;
uniform SamplerExternalOESType s_externalOESTexture;
uniform float u_opacity;
uniform float u_filterAmount;
uniform mat4 u_yuvToRgb;
uniform vec2 u_blurRadius;
uniform vec2 u_shadowOffset;
uniform vec4 u_color;
uniform float u_gaussianKernel[GAUSSIAN_KERNEL_HALF_WIDTH];
uniform int u_roundedRectNumber;
uniform vec4 u_roundedRect[ROUNDED_RECT_ARRAY_SIZE];
uniform mat4 u_roundedRectInverseTransformMatrix[ROUNDED_RECT_INVERSE_TRANSFORM_ARRAY_SIZE];
void noop(inout vec4 dummyParameter) { }
void noop(inout vec4 dummyParameter, vec2 texCoord) { }
void noop(inout vec2 dummyParameter) { }
float antialias()
{
if (v_nonProjectedPosition.w <= 0.)
return 1.;
return smoothstep(0., 1., v_antialias / v_nonProjectedPosition.w);
}
vec2 fragmentTransformTexCoord()
{
vec4 clampedPosition = clamp(vec4(v_texCoord, 0., 1.), 0., 1.);
return (u_textureSpaceMatrix * clampedPosition).xy;
}
vec2 vertexTransformTexCoord() { return v_transformedTexCoord; }
void applyManualRepeat(inout vec2 pos) { pos = fract(pos); }
void applyTextureRGB(inout vec4 color, vec2 texCoord) { color = u_textureColorSpaceMatrix * texture2D(s_sampler, texCoord); }
void applyPremultiply(inout vec4 color) { color = vec4(color.rgb * color.a, color.a); }
vec3 yuvToRgb(float y, float u, float v)
{
vec4 rgb = vec4(y, u, v, 1.0) * u_yuvToRgb;
return rgb.xyz;
}
void applyTextureYUV(inout vec4 color, vec2 texCoord)
{
float y = texture2D(s_samplerY, texCoord).r;
float u = texture2D(s_samplerU, texCoord).r;
float v = texture2D(s_samplerV, texCoord).r;
vec4 data = vec4(yuvToRgb(y, u, v), 1.0);
color = u_textureColorSpaceMatrix * data;
}
void applyTextureYUVA(inout vec4 color, vec2 texCoord)
{
float y = texture2D(s_samplerY, texCoord).r;
float u = texture2D(s_samplerU, texCoord).r;
float v = texture2D(s_samplerV, texCoord).r;
float a = texture2D(s_samplerA, texCoord).r;
vec4 data = vec4(yuvToRgb(y, u, v), a);
color = u_textureColorSpaceMatrix * data;
}
void applyTextureNV12(inout vec4 color, vec2 texCoord)
{
float y = texture2D(s_samplerY, texCoord).r;
vec2 uv = texture2D(s_samplerU, texCoord).rg;
vec4 data = vec4(yuvToRgb(y, uv.x, uv.y), 1.0);
color = u_textureColorSpaceMatrix * data;
}
void applyTextureNV21(inout vec4 color, vec2 texCoord)
{
float y = texture2D(s_samplerY, texCoord).r;
vec2 uv = texture2D(s_samplerU, texCoord).gr;
vec4 data = vec4(yuvToRgb(y, uv.x, uv.y), 1.0);
color = u_textureColorSpaceMatrix * data;
}
void applyTexturePackedYUV(inout vec4 color, vec2 texCoord)
{
vec4 data = texture2D(s_sampler, texCoord);
color = u_textureColorSpaceMatrix * vec4(yuvToRgb(data.b, data.g, data.r), data.a);
}
void applyOpacity(inout vec4 color) { color *= u_opacity; }
void applyAntialiasing(inout vec4 color) { color *= antialias(); }
void applyGrayscaleFilter(inout vec4 color)
{
float amount = 1.0 - u_filterAmount;
color = vec4((0.2126 + 0.7874 * amount) * color.r + (0.7152 - 0.7152 * amount) * color.g + (0.0722 - 0.0722 * amount) * color.b,
(0.2126 - 0.2126 * amount) * color.r + (0.7152 + 0.2848 * amount) * color.g + (0.0722 - 0.0722 * amount) * color.b,
(0.2126 - 0.2126 * amount) * color.r + (0.7152 - 0.7152 * amount) * color.g + (0.0722 + 0.9278 * amount) * color.b,
color.a);
}
void applySepiaFilter(inout vec4 color)
{
float amount = 1.0 - u_filterAmount;
color = vec4((0.393 + 0.607 * amount) * color.r + (0.769 - 0.769 * amount) * color.g + (0.189 - 0.189 * amount) * color.b,
(0.349 - 0.349 * amount) * color.r + (0.686 + 0.314 * amount) * color.g + (0.168 - 0.168 * amount) * color.b,
(0.272 - 0.272 * amount) * color.r + (0.534 - 0.534 * amount) * color.g + (0.131 + 0.869 * amount) * color.b,
color.a);
}
void applySaturateFilter(inout vec4 color)
{
color = vec4((0.213 + 0.787 * u_filterAmount) * color.r + (0.715 - 0.715 * u_filterAmount) * color.g + (0.072 - 0.072 * u_filterAmount) * color.b,
(0.213 - 0.213 * u_filterAmount) * color.r + (0.715 + 0.285 * u_filterAmount) * color.g + (0.072 - 0.072 * u_filterAmount) * color.b,
(0.213 - 0.213 * u_filterAmount) * color.r + (0.715 - 0.715 * u_filterAmount) * color.g + (0.072 + 0.928 * u_filterAmount) * color.b,
color.a);
}
void applyHueRotateFilter(inout vec4 color)
{
float pi = 3.14159265358979323846;
float c = cos(u_filterAmount * pi / 180.0);
float s = sin(u_filterAmount * pi / 180.0);
color = vec4(color.r * (0.213 + c * 0.787 - s * 0.213) + color.g * (0.715 - c * 0.715 - s * 0.715) + color.b * (0.072 - c * 0.072 + s * 0.928),
color.r * (0.213 - c * 0.213 + s * 0.143) + color.g * (0.715 + c * 0.285 + s * 0.140) + color.b * (0.072 - c * 0.072 - s * 0.283),
color.r * (0.213 - c * 0.213 - s * 0.787) + color.g * (0.715 - c * 0.715 + s * 0.715) + color.b * (0.072 + c * 0.928 + s * 0.072),
color.a);
}
float invert(float n, float a) { return (a - n) * u_filterAmount + n * (1.0 - u_filterAmount); }
void applyInvertFilter(inout vec4 color)
{
color = vec4(invert(color.r, color.a), invert(color.g, color.a), invert(color.b, color.a), color.a);
}
void applyBrightnessFilter(inout vec4 color)
{
color = vec4(color.rgb * u_filterAmount, color.a);
}
float contrast(float n) { return (n - 0.5) * u_filterAmount + 0.5; }
void applyContrastFilter(inout vec4 color)
{
color = vec4(contrast(color.r), contrast(color.g), contrast(color.b), color.a);
}
void applyOpacityFilter(inout vec4 color)
{
color *= u_filterAmount;
}
vec4 sampleColorAtRadius(float radius, vec2 texCoord)
{
vec2 coord = texCoord + radius * u_blurRadius;
return texture2D(s_sampler, coord);
}
float sampleAlphaAtRadius(float radius, vec2 texCoord)
{
vec2 coord = texCoord - u_shadowOffset + radius * u_blurRadius;
return texture2D(s_sampler, coord).a * float(coord.x > 0. && coord.y > 0. && coord.x < 1. && coord.y < 1.);
}
void applyBlurFilter(inout vec4 color, vec2 texCoord)
{
vec4 total = sampleColorAtRadius(0., texCoord) * u_gaussianKernel[0];
for (int i = 1; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) {
total += sampleColorAtRadius(float(i) * GAUSSIAN_KERNEL_STEP, texCoord) * u_gaussianKernel[i];
total += sampleColorAtRadius(float(-1 * i) * GAUSSIAN_KERNEL_STEP, texCoord) * u_gaussianKernel[i];
}
color = total;
}
void applyAlphaBlur(inout vec4 color, vec2 texCoord)
{
float total = sampleAlphaAtRadius(0., texCoord) * u_gaussianKernel[0];
for (int i = 1; i < GAUSSIAN_KERNEL_HALF_WIDTH; i++) {
total += sampleAlphaAtRadius(float(i) * GAUSSIAN_KERNEL_STEP, texCoord) * u_gaussianKernel[i];
total += sampleAlphaAtRadius(float(-1 * i) * GAUSSIAN_KERNEL_STEP, texCoord) * u_gaussianKernel[i];
}
color *= total;
}
vec4 sourceOver(vec4 src, vec4 dst) { return src + dst * (1. - src.a); }
void applyContentTexture(inout vec4 color, vec2 texCoord)
{
vec4 contentColor = texture2D(s_contentTexture, texCoord);
color = sourceOver(contentColor, color);
}
void applyTextureExternalOES(inout vec4 color, vec2 texCoord)
{
vec4 contentColor = texture2D(s_externalOESTexture, texCoord);
color = sourceOver(contentColor, color);
}
void applySolidColor(inout vec4 color) { color *= u_color; }
float ellipsisDist(vec2 p, vec2 radius)
{
if (radius == vec2(0, 0))
return 0.0;
vec2 p0 = p / radius;
vec2 p1 = 2.0 * p0 / radius;
return (dot(p0, p0) - 1.0) / length (p1);
}
float ellipsisCoverage(vec2 point, vec2 center, vec2 radius)
{
float d = ellipsisDist(point - center, radius);
return clamp(0.5 - d, 0.0, 1.0);
}
float roundedRectCoverage(vec2 p, vec4 bounds, vec2 topLeftRadii, vec2 topRightRadii, vec2 bottomLeftRadii, vec2 bottomRightRadii)
{
if (p.x < bounds.x || p.y < bounds.y || p.x >= bounds.z || p.y >= bounds.w)
return 0.0;
vec2 topLeftCenter = bounds.xy + topLeftRadii;
vec2 topRightCenter = bounds.zy + (topRightRadii * vec2(-1, 1));
vec2 bottomLeftCenter = bounds.xw + (bottomLeftRadii * vec2(1, -1));
vec2 bottomRightCenter = bounds.zw + (bottomRightRadii * vec2(-1, -1));
if (p.x < topLeftCenter.x && p.y < topLeftCenter.y)
return ellipsisCoverage(p, topLeftCenter, topLeftRadii);
if (p.x > topRightCenter.x && p.y < topRightCenter.y)
return ellipsisCoverage(p, topRightCenter, topRightRadii);
if (p.x < bottomLeftCenter.x && p.y > bottomLeftCenter.y)
return ellipsisCoverage(p, bottomLeftCenter, bottomLeftRadii);
if (p.x > bottomRightCenter.x && p.y > bottomRightCenter.y)
return ellipsisCoverage(p, bottomRightCenter, bottomRightRadii);
return 1.0;
}
void applyRoundedRectClip(inout vec4 color)
{
// This works by checking whether the fragment position, once the transform is applied,
// is inside the defined rounded rectangle or not.
//
// We can't use gl_fragCoord for the fragment position because thats the projected point
// and the projection screws the Z component. We need the real 3D position that comes from
// the nonProjectedPosition variable.
//
// This implementation is not optimal, but it's done this way in order to overcome rpi3's
// proprietary video driver limitations (see https://bugs.webkit.org/show_bug.cgi?id=219739).
for (int rectIndex = 0; rectIndex < ROUNDED_RECT_MAX_RECTS; rectIndex++) {
if (rectIndex >= u_roundedRectNumber)
break;
vec4 fragCoord = u_roundedRectInverseTransformMatrix[rectIndex] * v_nonProjectedPosition;
vec4 bounds = vec4(u_roundedRect[rectIndex * 3].xy, u_roundedRect[rectIndex * 3].xy + u_roundedRect[rectIndex * 3].zw);
vec2 topLeftRadii = u_roundedRect[(rectIndex * 3) + 1].xy;
vec2 topRightRadii = u_roundedRect[(rectIndex * 3) + 1].zw;
vec2 bottomLeftRadii = u_roundedRect[(rectIndex * 3) + 2].xy;
vec2 bottomRightRadii = u_roundedRect[(rectIndex * 3) + 2].zw;
color *= roundedRectCoverage(fragCoord.xy, bounds, topLeftRadii, topRightRadii, bottomLeftRadii, bottomRightRadii);
}
}
void main(void)
{
vec4 color = vec4(1., 1., 1., 1.);
vec2 texCoord = transformTexCoord();
applyManualRepeatIfNeeded(texCoord);
applyTextureRGBIfNeeded(color, texCoord);
applyTextureYUVIfNeeded(color, texCoord);
applyTextureYUVAIfNeeded(color, texCoord);
applyTextureNV12IfNeeded(color, texCoord);
applyTextureNV21IfNeeded(color, texCoord);
applyTexturePackedYUVIfNeeded(color, texCoord);
applyPremultiplyIfNeeded(color);
applySolidColorIfNeeded(color);
applyAlphaBlurIfNeeded(color, texCoord);
applyContentTextureIfNeeded(color, texCoord);
applyAntialiasingIfNeeded(color);
applyOpacityIfNeeded(color);
applyGrayscaleFilterIfNeeded(color);
applySepiaFilterIfNeeded(color);
applySaturateFilterIfNeeded(color);
applyHueRotateFilterIfNeeded(color);
applyInvertFilterIfNeeded(color);
applyBrightnessFilterIfNeeded(color);
applyContrastFilterIfNeeded(color);
applyOpacityFilterIfNeeded(color);
applyBlurFilterIfNeeded(color, texCoord);
applyTextureExternalOESIfNeeded(color, texCoord);
applyRoundedRectClipIfNeeded(color);
gl_FragColor = color;
}
);
Ref<TextureMapperShaderProgram> TextureMapperShaderProgram::create(TextureMapperShaderProgram::Options options)
{
#define SET_APPLIER_FROM_OPTIONS(Applier) \
optionsApplierBuilder.append(\
(options & TextureMapperShaderProgram::Applier) ? ENABLE_APPLIER(Applier) : DISABLE_APPLIER(Applier))
StringBuilder optionsApplierBuilder;
SET_APPLIER_FROM_OPTIONS(TextureRGB);
SET_APPLIER_FROM_OPTIONS(TextureYUV);
SET_APPLIER_FROM_OPTIONS(TextureYUVA);
SET_APPLIER_FROM_OPTIONS(TextureNV12);
SET_APPLIER_FROM_OPTIONS(TextureNV21);
SET_APPLIER_FROM_OPTIONS(TexturePackedYUV);
SET_APPLIER_FROM_OPTIONS(SolidColor);
SET_APPLIER_FROM_OPTIONS(Opacity);
SET_APPLIER_FROM_OPTIONS(Antialiasing);
SET_APPLIER_FROM_OPTIONS(GrayscaleFilter);
SET_APPLIER_FROM_OPTIONS(SepiaFilter);
SET_APPLIER_FROM_OPTIONS(SaturateFilter);
SET_APPLIER_FROM_OPTIONS(HueRotateFilter);
SET_APPLIER_FROM_OPTIONS(BrightnessFilter);
SET_APPLIER_FROM_OPTIONS(ContrastFilter);
SET_APPLIER_FROM_OPTIONS(InvertFilter);
SET_APPLIER_FROM_OPTIONS(OpacityFilter);
SET_APPLIER_FROM_OPTIONS(BlurFilter);
SET_APPLIER_FROM_OPTIONS(AlphaBlur);
SET_APPLIER_FROM_OPTIONS(ContentTexture);
SET_APPLIER_FROM_OPTIONS(ManualRepeat);
SET_APPLIER_FROM_OPTIONS(TextureExternalOES);
SET_APPLIER_FROM_OPTIONS(RoundedRectClip);
SET_APPLIER_FROM_OPTIONS(Premultiply);
StringBuilder vertexShaderBuilder;
// Append the options.
vertexShaderBuilder.append(optionsApplierBuilder.toString());
// Append the appropriate input/output variable definitions.
vertexShaderBuilder.append(vertexTemplateLT320Vars);
// Append the common code.
vertexShaderBuilder.append(vertexTemplateCommon);
StringBuilder fragmentShaderBuilder;
// Append the options.
fragmentShaderBuilder.append(optionsApplierBuilder.toString());
// Append the common header.
fragmentShaderBuilder.append(fragmentTemplateHeaderCommon);
// Append the appropriate input/output variable definitions.
fragmentShaderBuilder.append(fragmentTemplateLT320Vars);
// Append the common code.
fragmentShaderBuilder.append(fragmentTemplateCommon);
return adoptRef(*new TextureMapperShaderProgram(vertexShaderBuilder.toString(), fragmentShaderBuilder.toString()));
}
#if !LOG_DISABLED
static CString getShaderLog(GLuint shader)
{
GLint logLength = 0;
glGetShaderiv(shader, GL_INFO_LOG_LENGTH, &logLength);
if (!logLength)
return { };
Vector<GLchar> info(logLength);
GLsizei infoLength = 0;
glGetShaderInfoLog(shader, logLength, &infoLength, info.data());
size_t stringLength = std::max(infoLength, 0);
return { info.data(), stringLength };
}
static CString getProgramLog(GLuint program)
{
GLint logLength = 0;
glGetProgramiv(program, GL_INFO_LOG_LENGTH, &logLength);
if (!logLength)
return { };
Vector<GLchar> info(logLength);
GLsizei infoLength = 0;
glGetProgramInfoLog(program, logLength, &infoLength, info.data());
size_t stringLength = std::max(infoLength, 0);
return { info.data(), stringLength };
}
#endif
TextureMapperShaderProgram::TextureMapperShaderProgram(const String& vertex, const String& fragment)
{
m_vertexShader = glCreateShader(GL_VERTEX_SHADER);
{
CString vertexCString = vertex.utf8();
const char* data = vertexCString.data();
int length = vertexCString.length();
glShaderSource(m_vertexShader, 1, &data, &length);
}
glCompileShader(m_vertexShader);
m_fragmentShader = glCreateShader(GL_FRAGMENT_SHADER);
{
CString fragmentCString = fragment.utf8();
const char* data = fragmentCString.data();
int length = fragmentCString.length();
glShaderSource(m_fragmentShader, 1, &data, &length);
}
glCompileShader(m_fragmentShader);
m_id = glCreateProgram();
glAttachShader(m_id, m_vertexShader);
glAttachShader(m_id, m_fragmentShader);
glLinkProgram(m_id);
if (!compositingLogEnabled() || glGetError() == GL_NO_ERROR)
return;
LOG(Compositing, "Vertex shader log: %s\n", getShaderLog(m_vertexShader).data());
LOG(Compositing, "Fragment shader log: %s\n", getShaderLog(m_fragmentShader).data());
LOG(Compositing, "Program log: %s\n", getProgramLog(m_id).data());
}
TextureMapperShaderProgram::~TextureMapperShaderProgram()
{
if (!m_id)
return;
glDetachShader(m_id, m_vertexShader);
glDeleteShader(m_vertexShader);
glDetachShader(m_id, m_fragmentShader);
glDeleteShader(m_fragmentShader);
glDeleteProgram(m_id);
}
void TextureMapperShaderProgram::setMatrix(GLuint location, const TransformationMatrix& matrix)
{
auto floatMatrix = matrix.toColumnMajorFloatArray();
glUniformMatrix4fv(location, 1, false, floatMatrix.data());
}
GLuint TextureMapperShaderProgram::getLocation(VariableID variable, ASCIILiteral name, VariableType type)
{
auto addResult = m_variables.ensure(variable,
[this, &name, type] {
switch (type) {
case UniformVariable:
return glGetUniformLocation(m_id, name);
case AttribVariable:
return glGetAttribLocation(m_id, name);
}
ASSERT_NOT_REACHED();
return 0;
});
return addResult.iterator->value;
}
} // namespace WebCore
#endif // USE(TEXTURE_MAPPER_GL)
|