1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*
* Copyright (C) 2017-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "MarkingConstraintSolver.h"
#include "JSCInlines.h"
#include "MarkingConstraintSet.h"
namespace JSC {
MarkingConstraintSolver::MarkingConstraintSolver(MarkingConstraintSet& set)
: m_heap(set.m_heap)
, m_mainVisitor(m_heap.collectorSlotVisitor())
, m_set(set)
{
m_heap.forEachSlotVisitor(
[&] (SlotVisitor& visitor) {
m_visitCounters.append(VisitCounter(visitor));
});
}
MarkingConstraintSolver::~MarkingConstraintSolver()
{
}
bool MarkingConstraintSolver::didVisitSomething() const
{
for (const VisitCounter& visitCounter : m_visitCounters) {
if (visitCounter.visitCount())
return true;
}
return false;
}
void MarkingConstraintSolver::execute(SchedulerPreference preference, ScopedLambda<std::optional<unsigned>()> pickNext)
{
m_pickNextIsStillActive = true;
RELEASE_ASSERT(!m_numThreadsThatMayProduceWork);
if (Options::useParallelMarkingConstraintSolver()) {
dataLogIf(Options::logGC(), preference == ParallelWorkFirst ? "P" : "N", "<");
m_heap.runFunctionInParallel(
[&] (SlotVisitor& visitor) { runExecutionThread(visitor, preference, pickNext); });
dataLogIf(Options::logGC(), ">");
} else
runExecutionThread(m_mainVisitor, preference, pickNext);
RELEASE_ASSERT(!m_pickNextIsStillActive);
RELEASE_ASSERT(!m_numThreadsThatMayProduceWork);
if (!m_toExecuteSequentially.isEmpty()) {
for (unsigned indexToRun : m_toExecuteSequentially)
execute(*m_set.m_set[indexToRun]);
m_toExecuteSequentially.clear();
}
RELEASE_ASSERT(m_toExecuteInParallel.isEmpty());
}
void MarkingConstraintSolver::drain(BitVector& unexecuted)
{
auto iter = unexecuted.begin();
auto end = unexecuted.end();
if (iter == end)
return;
auto pickNext = scopedLambda<std::optional<unsigned>()>(
[&] () -> std::optional<unsigned> {
if (iter == end)
return std::nullopt;
return *iter++;
});
execute(NextConstraintFirst, pickNext);
unexecuted.clearAll();
}
void MarkingConstraintSolver::converge(const Vector<MarkingConstraint*>& order)
{
if (didVisitSomething())
return;
if (order.isEmpty())
return;
size_t index = 0;
// We want to execute the first constraint sequentially if we think it will quickly give us a
// result. If we ran it in parallel to other constraints, then we might end up having to wait for
// those other constraints to finish, which would be a waste of time since during convergence it's
// empirically most optimal to return to draining as soon as a constraint generates work. Most
// constraints don't generate any work most of the time, and when they do generate work, they tend
// to generate enough of it to feed a decent draining cycle. Therefore, pause times are lowest if
// we get the heck out of here as soon as a constraint generates work. I think that part of what
// makes this optimal is that we also never abort running a constraint early, so when we do run
// one, it has an opportunity to generate as much work as it possibly can.
if (order[index]->quickWorkEstimate(m_mainVisitor) > 0.) {
execute(*order[index++]);
if (m_toExecuteInParallel.isEmpty()
&& (order.isEmpty() || didVisitSomething()))
return;
}
auto pickNext = scopedLambda<std::optional<unsigned>()>(
[&] () -> std::optional<unsigned> {
if (didVisitSomething())
return std::nullopt;
if (index >= order.size())
return std::nullopt;
MarkingConstraint& constraint = *order[index++];
return constraint.index();
});
execute(ParallelWorkFirst, pickNext);
}
void MarkingConstraintSolver::execute(MarkingConstraint& constraint)
{
if (m_executed.get(constraint.index()))
return;
constraint.prepareToExecute(NoLockingNecessary, m_mainVisitor);
constraint.execute(m_mainVisitor);
m_executed.set(constraint.index());
}
void MarkingConstraintSolver::addParallelTask(RefPtr<SharedTask<void(SlotVisitor&)>> task, MarkingConstraint& constraint)
{
Locker locker { m_lock };
m_toExecuteInParallel.append(TaskWithConstraint(WTFMove(task), &constraint));
}
void MarkingConstraintSolver::runExecutionThread(SlotVisitor& visitor, SchedulerPreference preference, ScopedLambda<std::optional<unsigned>()> pickNext)
{
for (;;) {
bool doParallelWorkMode;
MarkingConstraint* constraint = nullptr;
unsigned indexToRun = UINT_MAX;
TaskWithConstraint task;
{
Locker locker { m_lock };
for (;;) {
auto tryParallelWork = [&] () -> bool {
if (m_toExecuteInParallel.isEmpty())
return false;
task = m_toExecuteInParallel.first();
constraint = task.constraint;
doParallelWorkMode = true;
return true;
};
auto tryNextConstraint = [&] () -> bool {
if (!m_pickNextIsStillActive)
return false;
for (;;) {
std::optional<unsigned> pickResult = pickNext();
if (!pickResult) {
m_pickNextIsStillActive = false;
return false;
}
if (m_executed.get(*pickResult))
continue;
MarkingConstraint& candidateConstraint = *m_set.m_set[*pickResult];
if (candidateConstraint.concurrency() == ConstraintConcurrency::Sequential) {
m_toExecuteSequentially.append(*pickResult);
continue;
}
if (candidateConstraint.parallelism() == ConstraintParallelism::Parallel)
m_numThreadsThatMayProduceWork++;
indexToRun = *pickResult;
constraint = &candidateConstraint;
doParallelWorkMode = false;
constraint->prepareToExecute(locker, visitor);
return true;
}
};
if (preference == ParallelWorkFirst) {
if (tryParallelWork() || tryNextConstraint())
break;
} else {
if (tryNextConstraint() || tryParallelWork())
break;
}
// This means that we have nothing left to run. The only way for us to have more work is
// if someone is running a constraint that may produce parallel work.
if (!m_numThreadsThatMayProduceWork)
return;
// FIXME: Any waiting could be replaced with just running the SlotVisitor.
// I wonder if that would be profitable.
m_condition.wait(m_lock);
}
}
if (doParallelWorkMode)
constraint->doParallelWork(visitor, *task.task);
else {
if (constraint->parallelism() == ConstraintParallelism::Parallel) {
visitor.m_currentConstraint = constraint;
visitor.m_currentSolver = this;
}
constraint->execute(visitor);
visitor.m_currentConstraint = nullptr;
visitor.m_currentSolver = nullptr;
}
{
Locker locker { m_lock };
if (doParallelWorkMode) {
if (!m_toExecuteInParallel.isEmpty()
&& task == m_toExecuteInParallel.first())
m_toExecuteInParallel.takeFirst();
else
ASSERT(!m_toExecuteInParallel.contains(task));
} else {
if (constraint->parallelism() == ConstraintParallelism::Parallel)
m_numThreadsThatMayProduceWork--;
m_executed.set(indexToRun);
}
m_condition.notifyAll();
}
}
}
} // namespace JSC
|