File: AssemblerBuffer.h

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (525 lines) | stat: -rw-r--r-- 18,218 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
/*
 * Copyright (C) 2008-2023 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#pragma once

#if ENABLE(ASSEMBLER)

#include "ExecutableAllocator.h"
#include "JITCompilationEffort.h"
#include "SecureARM64EHashPinsInlines.h"
#include "stdint.h"
#include <string.h>
#include <wtf/Assertions.h>
#include <wtf/FastMalloc.h>
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
#include <wtf/PtrTag.h>
#endif
#include <wtf/StdLibExtras.h>
#include <wtf/ThreadSpecific.h>
#include <wtf/UnalignedAccess.h>

namespace JSC {
    enum class AssemblerDataType : uint8_t { Code, Hashes };
    template<AssemblerDataType>
    class AssemblerDataImpl;

    using AssemblerData = AssemblerDataImpl<AssemblerDataType::Code>;
    using ThreadSpecificAssemblerData = ThreadSpecific<AssemblerData, WTF::CanBeGCThread::True>;
    JS_EXPORT_PRIVATE ThreadSpecificAssemblerData& threadSpecificAssemblerData();

#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
    using AssemblerHashes = AssemblerDataImpl<AssemblerDataType::Hashes>;
    using ThreadSpecificAssemblerHashes = ThreadSpecific<AssemblerHashes, WTF::CanBeGCThread::True>;
    JS_EXPORT_PRIVATE ThreadSpecificAssemblerHashes& threadSpecificAssemblerHashes();
#endif

    class LinkBuffer;

    DECLARE_ALLOCATOR_WITH_HEAP_IDENTIFIER(AssemblerData);

    struct AssemblerLabel {
        inline AssemblerLabel() { setOffset(std::numeric_limits<uint32_t>::max()); }
        inline AssemblerLabel(const AssemblerLabel& other) { setOffset(other.offset()); }
        inline AssemblerLabel(AssemblerLabel&& other) { setOffset(other.offset()); }
        inline explicit AssemblerLabel(uint32_t offset) { setOffset(offset); }

        AssemblerLabel& operator=(const AssemblerLabel& other) { setOffset(other.offset()); return *this; }
        AssemblerLabel& operator=(AssemblerLabel&& other) { setOffset(other.offset()); return *this; }

        bool isSet() const { return (offset() != std::numeric_limits<uint32_t>::max()); }

        inline AssemblerLabel labelAtOffset(int offset) const
        {
            return AssemblerLabel(this->offset() + offset);
        }

        bool operator==(const AssemblerLabel& other) const { return offset() == other.offset(); }

        inline uint32_t offset() const
        {
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
            return static_cast<uint32_t>(untagInt(m_offset, std::bit_cast<PtrTag>(this)));
#else
            return m_offset;
#endif
        }

    private:
        inline void setOffset(uint32_t offset)
        {
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
            m_offset = tagInt(static_cast<uint64_t>(offset), std::bit_cast<PtrTag>(this));
#else
            m_offset = offset;
#endif
        }

#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
        uint64_t m_offset;
#else
        uint32_t m_offset;
#endif
    };

    template<AssemblerDataType type>
    class AssemblerDataImpl {
        WTF_MAKE_NONCOPYABLE(AssemblerDataImpl);
        static constexpr size_t InlineCapacity = 128;
    public:
        AssemblerDataImpl()
            : m_buffer(m_inlineBuffer)
            , m_capacity(InlineCapacity)
        {
#if ENABLE(JIT_SCAN_ASSEMBLER_BUFFER_FOR_ZEROES)
            // This makes it easier to know (at zero-scan time) that zeroes we
            // see were indeed written there, rather than just being 'leftover'
            // from initialization
            poisonInlineBuffer();
#endif
            if constexpr (type == AssemblerDataType::Code)
                takeBufferIfLarger(*threadSpecificAssemblerData());
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
            if constexpr (type == AssemblerDataType::Hashes)
                takeBufferIfLarger(*threadSpecificAssemblerHashes());
#else
            static_assert(type != AssemblerDataType::Hashes);
#endif
        }

        AssemblerDataImpl(AssemblerDataImpl&& other)
        {
            if (other.isInlineBuffer()) {
                ASSERT(other.m_capacity == InlineCapacity);
                memcpy(m_inlineBuffer, other.m_inlineBuffer, InlineCapacity);
                m_buffer = m_inlineBuffer;
            } else
                m_buffer = other.m_buffer;
            m_capacity = other.m_capacity;

            other.m_buffer = other.m_inlineBuffer;
            other.m_capacity = InlineCapacity;
        }

        AssemblerDataImpl& operator=(AssemblerDataImpl&& other)
        {
            if (m_buffer && !isInlineBuffer())
                AssemblerDataMalloc::free(m_buffer);

            if (other.isInlineBuffer()) {
                ASSERT(other.m_capacity == InlineCapacity);
                memcpy(m_inlineBuffer, other.m_inlineBuffer, InlineCapacity);
                m_buffer = m_inlineBuffer;
            } else
                m_buffer = other.m_buffer;
            m_capacity = other.m_capacity;

            other.m_buffer = other.m_inlineBuffer;
            other.m_capacity = InlineCapacity;
            return *this;
        }

        void takeBufferIfLarger(AssemblerDataImpl& other)
        {
            if (other.isInlineBuffer())
                return;

            if (m_capacity >= other.m_capacity)
                return;

            if (m_buffer && !isInlineBuffer())
                AssemblerDataMalloc::free(m_buffer);

            m_buffer = other.m_buffer;
            m_capacity = other.m_capacity;

            other.m_buffer = other.m_inlineBuffer;
            other.m_capacity = InlineCapacity;
        }

        ~AssemblerDataImpl()
        {
            if constexpr (type == AssemblerDataType::Code)
                threadSpecificAssemblerData()->takeBufferIfLarger(*this);
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
            if constexpr (type == AssemblerDataType::Hashes)
                threadSpecificAssemblerHashes()->takeBufferIfLarger(*this);
#else
            static_assert(type != AssemblerDataType::Hashes);
#endif
            clear();
        }

        void clear()
        {
            if (m_buffer && !isInlineBuffer()) {
                AssemblerDataMalloc::free(m_buffer);
                m_capacity = InlineCapacity;
                m_buffer = m_inlineBuffer;
            }
        }

        char* buffer() const { return m_buffer; }

        unsigned capacity() const { return m_capacity; }

        void grow(unsigned extraCapacity = 0)
        {
            m_capacity = m_capacity + m_capacity / 2 + extraCapacity;
            if (isInlineBuffer()) {
                m_buffer = static_cast<char*>(AssemblerDataMalloc::malloc(m_capacity));
                memcpy(m_buffer, m_inlineBuffer, InlineCapacity);
            } else
                m_buffer = static_cast<char*>(AssemblerDataMalloc::realloc(m_buffer, m_capacity));
        }

    private:
        void poisonInlineBuffer()
        {
            // On x86 this is the HLT instruction, which will raise SIGSEGV
            // when executed in userspace. This is preferable to INT3 (0xCC) as
            // we use 0xCC for alignment padding.
            // On ARM64 this results in the illegal instrucion 0xF4F4F4F4 and
            // will thus raise SIGILL.
            constexpr const uint8_t poisonByte = 0xF4;
            memset(m_inlineBuffer, poisonByte, InlineCapacity);
        }

        bool isInlineBuffer() const { return m_buffer == m_inlineBuffer; }
        char* m_buffer;
        char m_inlineBuffer[InlineCapacity];
        unsigned m_capacity;
    };

#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
    enum class ShouldSign : bool { No, Yes };
    template <ShouldSign shouldSign>
    class ARM64EHash {
        WTF_MAKE_NONCOPYABLE(ARM64EHash);
    public:
        ARM64EHash()
        {
            allocatePinForCurrentThreadAndInitializeHash();
        }

        ~ARM64EHash()
        {
            deallocatePinForCurrentThread();
        }

        ALWAYS_INLINE void allocatePinForCurrentThreadAndInitializeHash()
        {
            if constexpr (shouldSign == ShouldSign::Yes) {
                m_initializedPin = true;
                g_jscConfig.arm64eHashPins.allocatePinForCurrentThread();
                setUpdatedHash(0, 0);
            } else
                m_hash = 0;
        }

        void deallocatePinForCurrentThread()
        {
            if (m_initializedPin) {
                g_jscConfig.arm64eHashPins.deallocatePinForCurrentThread();
                m_initializedPin = false;
            }
        }

        ALWAYS_INLINE uint32_t update(uint32_t instruction, uint32_t index)
        {
            uint32_t currentHash = this->currentHash(index);
            uint64_t nextIndex = index + 1;
            uint32_t output = nextValue(instruction, nextIndex, currentHash);
            setUpdatedHash(output, nextIndex);
            return output;
        }

    private:
        static constexpr uint8_t initializationNamespace = 0x11;

        static ALWAYS_INLINE PtrTag makeDiversifier(uint8_t namespaceTag, uint64_t index, uint32_t value)
        {
            // <namespaceTag:8><index:24><value:32>
            return static_cast<PtrTag>((static_cast<uint64_t>(namespaceTag) << 56) + ((index & 0xFFFFFF) << 32) + value);
        }

        static ALWAYS_INLINE uint32_t nextValue(uint64_t instruction, uint64_t index, uint32_t currentValue)
        {
            uint64_t a = tagInt<PACKeyType::ProcessIndependent>(instruction, makeDiversifier(0x12, index, currentValue));
            uint64_t b = tagInt<PACKeyType::ProcessIndependent>(instruction, makeDiversifier(0x13, index, currentValue));
            return (a >> 39) ^ (b >> 23);
        }

        static ALWAYS_INLINE uint32_t pin()
        {
            return g_jscConfig.arm64eHashPins.pinForCurrentThread();
        }

        ALWAYS_INLINE uint32_t currentHash(uint32_t index)
        {
            if constexpr (shouldSign == ShouldSign::Yes)
                return untagInt<PACKeyType::ProcessIndependent>(m_hash, makeDiversifier(initializationNamespace, index, pin()));
            return m_hash;
        }

        ALWAYS_INLINE void setUpdatedHash(uint32_t value, uint32_t index)
        {
            if constexpr (shouldSign == ShouldSign::Yes)
                m_hash = tagInt<PACKeyType::ProcessIndependent>(static_cast<uint64_t>(value), makeDiversifier(initializationNamespace, index, pin()));
            else
                m_hash = static_cast<uint64_t>(value);
        }

        uint64_t m_hash;
        bool m_initializedPin { false };
    };
#endif // ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)

    class AssemblerBuffer {
    public:
        AssemblerBuffer()
            : m_storage()
            , m_index(0)
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
            , m_hash()
            , m_hashes()
#endif
        {
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
            ASSERT(m_storage.capacity() == m_hashes.capacity());
#endif
        }

        ~AssemblerBuffer()
        {
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
            ASSERT(m_storage.capacity() == m_hashes.capacity());
#endif
        }

        bool isAvailable(unsigned space)
        {
            return m_index + space <= m_storage.capacity();
        }

        void ensureSpace(unsigned space)
        {
            while (!isAvailable(space))
                outOfLineGrow();
        }

        bool isAligned(int alignment) const
        {
            return !(m_index & (alignment - 1));
        }

#if !CPU(ARM64)
        void putByteUnchecked(int8_t value) { putIntegralUnchecked(value); }
        void putByte(int8_t value) { putIntegral(value); }
        void putShortUnchecked(int16_t value) { putIntegralUnchecked(value); }
        void putShort(int16_t value) { putIntegral(value); }
        void putInt64Unchecked(int64_t value) { putIntegralUnchecked(value); }
        void putInt64(int64_t value) { putIntegral(value); }
#endif
        void putIntUnchecked(int32_t value) { putIntegralUnchecked(value); }
        void putInt(int32_t value) { putIntegral(value); }

        size_t codeSize() const
        {
            return m_index;
        }

#if !CPU(ARM64)
        void setCodeSize(size_t index)
        {
            // Warning: Only use this if you know exactly what you are doing.
            // For example, say you want 40 bytes of nops, it's ok to grow
            // and then fill 40 bytes of nops using bigger instructions.
            m_index = index;
            ASSERT(m_index <= m_storage.capacity());
        }
#endif

        AssemblerLabel label() const
        {
            return AssemblerLabel(m_index);
        }

        unsigned debugOffset() { return m_index; }

        AssemblerData&& releaseAssemblerData()
        {
            return WTFMove(m_storage);
        }

#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
        AssemblerHashes&& releaseAssemblerHashes()
        {
            return WTFMove(m_hashes);
        }
#endif

        // LocalWriter is a trick to keep the storage buffer and the index
        // in memory while issuing multiple Stores.
        // It is created in a block scope and its attribute can stay live
        // between writes.
        //
        // LocalWriter *CANNOT* be mixed with other types of access to AssemblerBuffer.
        // AssemblerBuffer cannot be used until its LocalWriter goes out of scope.
#if !CPU(ARM64) // If we ever need to use this on arm64e, we would need to make the checksum aware of this.
        class LocalWriter {
        public:
            LocalWriter(AssemblerBuffer& buffer, unsigned requiredSpace)
                : m_buffer(buffer)
            {
                buffer.ensureSpace(requiredSpace);
                m_storageBuffer = buffer.m_storage.buffer();
                m_index = buffer.m_index;
#if ASSERT_ENABLED
                m_initialIndex = m_index;
                m_requiredSpace = requiredSpace;
#endif
            }

            ~LocalWriter()
            {
                ASSERT(m_index - m_initialIndex <= m_requiredSpace);
                ASSERT(m_buffer.m_index == m_initialIndex);
                ASSERT(m_storageBuffer == m_buffer.m_storage.buffer());
                m_buffer.m_index = m_index;
            }

            void putByteUnchecked(int8_t value) { putIntegralUnchecked(value); }
            void putShortUnchecked(int16_t value) { putIntegralUnchecked(value); }
            void putIntUnchecked(int32_t value) { putIntegralUnchecked(value); }
            void putInt64Unchecked(int64_t value) { putIntegralUnchecked(value); }
        private:
            template<typename IntegralType>
            void putIntegralUnchecked(IntegralType value)
            {
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
                ASSERT(m_index + sizeof(IntegralType) <= m_buffer.m_storage.capacity());
                WTF::unalignedStore<IntegralType>(m_storageBuffer + m_index, value);
                m_index += sizeof(IntegralType);
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
            }
            AssemblerBuffer& m_buffer;
            char* m_storageBuffer;
            unsigned m_index;
#if ASSERT_ENABLED
            unsigned m_initialIndex;
            unsigned m_requiredSpace;
#endif
        };
#endif // !CPU(ARM64)

#if !CPU(ARM64) // If we were to define this on arm64e, we'd need a way to update the hash as we write directly into the buffer.
        void* data() const { return m_storage.buffer(); }
#endif

#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
        ARM64EHash<ShouldSign::Yes>& arm64eHash() { return m_hash; }
#endif

    protected:
        template<typename IntegralType>
        void putIntegral(IntegralType value)
        {
            unsigned nextIndex = m_index + sizeof(IntegralType);
            if (UNLIKELY(nextIndex > m_storage.capacity()))
                outOfLineGrow();
            putIntegralUnchecked<IntegralType>(value);
        }

        template<typename IntegralType>
        void putIntegralUnchecked(IntegralType value)
        {
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
#if CPU(ARM64)
            static_assert(sizeof(value) == 4);
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
            uint32_t hash = m_hash.update(value, m_index / sizeof(IntegralType));
            WTF::unalignedStore<uint32_t>(m_hashes.buffer() + m_index, hash);
#endif
#endif
            ASSERT(isAvailable(sizeof(IntegralType)));
            WTF::unalignedStore<IntegralType>(m_storage.buffer() + m_index, value);
            m_index += sizeof(IntegralType);
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
        }

    private:
        void grow(int extraCapacity = 0)
        {
            m_storage.grow(extraCapacity);
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
            m_hashes.grow(extraCapacity);
#endif
        }

        NEVER_INLINE void outOfLineGrow()
        {
            m_storage.grow();
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
            m_hashes.grow();
#endif
        }

#if !CPU(ARM64)
        friend LocalWriter;
#endif
        friend LinkBuffer;

        AssemblerData m_storage;
        unsigned m_index;
#if ENABLE(JIT_SIGN_ASSEMBLER_BUFFER)
        ARM64EHash<ShouldSign::Yes> m_hash;
        AssemblerHashes m_hashes;
#endif
    };

} // namespace JSC

#endif // ENABLE(ASSEMBLER)