1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
|
/*
* Copyright (C) 2012-2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "OSCheck.h"
#include <optional>
#include <wtf/Atomics.h>
namespace JSC {
template<size_t bits, typename Type>
ALWAYS_INLINE constexpr bool isInt(Type t)
{
constexpr size_t shift = sizeof(Type) * CHAR_BIT - bits;
static_assert(sizeof(Type) * CHAR_BIT > shift, "shift is larger than the size of the value");
return ((t << shift) >> shift) == t;
}
ALWAYS_INLINE bool isInt9(int32_t value)
{
return value == ((value << 23) >> 23);
}
template<typename Type>
ALWAYS_INLINE bool isUInt12(Type value)
{
return !(value & ~static_cast<Type>(0xfff));
}
template<int datasize>
ALWAYS_INLINE bool isValidScaledUImm12(int32_t offset)
{
int32_t maxPImm = 4095 * (datasize / 8);
if (offset < 0)
return false;
if (offset > maxPImm)
return false;
if (offset & ((datasize / 8) - 1))
return false;
return true;
}
ALWAYS_INLINE bool isValidSignedImm9(int32_t value)
{
return isInt9(value);
}
ALWAYS_INLINE bool isValidSignedImm7(int32_t value, int alignmentShiftAmount)
{
constexpr int32_t disallowedHighBits = 32 - 7;
int32_t shiftedValue = value >> alignmentShiftAmount;
bool fitsIn7Bits = shiftedValue == ((shiftedValue << disallowedHighBits) >> disallowedHighBits);
bool hasCorrectAlignment = value == (shiftedValue << alignmentShiftAmount);
return fitsIn7Bits && hasCorrectAlignment;
}
class ARM64LogicalImmediate {
public:
static ARM64LogicalImmediate create32(uint32_t value)
{
// Check for 0, -1 - these cannot be encoded.
if (!value || !~value)
return InvalidLogicalImmediate;
// First look for a 32-bit pattern, then for repeating 16-bit
// patterns, 8-bit, 4-bit, and finally 2-bit.
unsigned hsb, lsb;
bool inverted;
if (findBitRange<32>(value, hsb, lsb, inverted))
return encodeLogicalImmediate<32>(hsb, lsb, inverted);
if ((value & 0xffff) != (value >> 16))
return InvalidLogicalImmediate;
value &= 0xffff;
if (findBitRange<16>(value, hsb, lsb, inverted))
return encodeLogicalImmediate<16>(hsb, lsb, inverted);
if ((value & 0xff) != (value >> 8))
return InvalidLogicalImmediate;
value &= 0xff;
if (findBitRange<8>(value, hsb, lsb, inverted))
return encodeLogicalImmediate<8>(hsb, lsb, inverted);
if ((value & 0xf) != (value >> 4))
return InvalidLogicalImmediate;
value &= 0xf;
if (findBitRange<4>(value, hsb, lsb, inverted))
return encodeLogicalImmediate<4>(hsb, lsb, inverted);
if ((value & 0x3) != (value >> 2))
return InvalidLogicalImmediate;
value &= 0x3;
if (findBitRange<2>(value, hsb, lsb, inverted))
return encodeLogicalImmediate<2>(hsb, lsb, inverted);
return InvalidLogicalImmediate;
}
static ARM64LogicalImmediate create64(uint64_t value)
{
// Check for 0, -1 - these cannot be encoded.
if (!value || !~value)
return InvalidLogicalImmediate;
// Look for a contiguous bit range.
unsigned hsb, lsb;
bool inverted;
if (findBitRange<64>(value, hsb, lsb, inverted))
return encodeLogicalImmediate<64>(hsb, lsb, inverted);
// If the high & low 32 bits are equal, we can try for a 32-bit (or narrower) pattern.
if (static_cast<uint32_t>(value) == static_cast<uint32_t>(value >> 32))
return create32(static_cast<uint32_t>(value));
return InvalidLogicalImmediate;
}
int value() const
{
ASSERT(isValid());
return m_value;
}
bool isValid() const
{
return m_value != InvalidLogicalImmediate;
}
bool is64bit() const
{
return m_value & (1 << 12);
}
private:
ARM64LogicalImmediate(int value)
: m_value(value)
{
}
// Generate a mask with bits in the range hsb..0 set, for example:
// hsb:63 = 0xffffffffffffffff
// hsb:42 = 0x000007ffffffffff
// hsb: 0 = 0x0000000000000001
static uint64_t mask(unsigned hsb)
{
ASSERT(hsb < 64);
return 0xffffffffffffffffull >> (63 - hsb);
}
template<unsigned N>
static void partialHSB(uint64_t& value, unsigned&result)
{
if (value & (0xffffffffffffffffull << N)) {
result += N;
value >>= N;
}
}
// Find the bit number of the highest bit set in a non-zero value, for example:
// 0x8080808080808080 = hsb:63
// 0x0000000000000001 = hsb: 0
// 0x000007ffffe00000 = hsb:42
static unsigned highestSetBit(uint64_t value)
{
ASSERT(value);
unsigned hsb = 0;
partialHSB<32>(value, hsb);
partialHSB<16>(value, hsb);
partialHSB<8>(value, hsb);
partialHSB<4>(value, hsb);
partialHSB<2>(value, hsb);
partialHSB<1>(value, hsb);
return hsb;
}
// This function takes a value and a bit width, where value obeys the following constraints:
// * bits outside of the width of the value must be zero.
// * bits within the width of value must neither be all clear or all set.
// The input is inspected to detect values that consist of either two or three contiguous
// ranges of bits. The output range hsb..lsb will describe the second range of the value.
// if the range is set, inverted will be false, and if the range is clear, inverted will
// be true. For example (with width 8):
// 00001111 = hsb:3, lsb:0, inverted:false
// 11110000 = hsb:3, lsb:0, inverted:true
// 00111100 = hsb:5, lsb:2, inverted:false
// 11000011 = hsb:5, lsb:2, inverted:true
template<unsigned width>
static bool findBitRange(uint64_t value, unsigned& hsb, unsigned& lsb, bool& inverted)
{
ASSERT(value & mask(width - 1));
ASSERT(value != mask(width - 1));
ASSERT(!(value & ~mask(width - 1)));
// Detect cases where the top bit is set; if so, flip all the bits & set invert.
// This halves the number of patterns we need to look for.
const uint64_t msb = 1ull << (width - 1);
if ((inverted = (value & msb)))
value ^= mask(width - 1);
// Find the highest set bit in value, generate a corresponding mask & flip all
// bits under it.
hsb = highestSetBit(value);
value ^= mask(hsb);
if (!value) {
// If this cleared the value, then the range hsb..0 was all set.
lsb = 0;
return true;
}
// Try making one more mask, and flipping the bits!
lsb = highestSetBit(value);
value ^= mask(lsb);
if (!value) {
// Success - but lsb actually points to the hsb of a third range - add one
// to get to the lsb of the mid range.
++lsb;
return true;
}
return false;
}
// Encodes the set of immN:immr:imms fields found in a logical immediate.
template<unsigned width>
static int encodeLogicalImmediate(unsigned hsb, unsigned lsb, bool inverted)
{
// Check width is a power of 2!
ASSERT(!(width & (width -1)));
ASSERT(width <= 64 && width >= 2);
ASSERT(hsb >= lsb);
ASSERT(hsb < width);
int immN = 0;
int imms = 0;
int immr = 0;
// For 64-bit values this is easy - just set immN to true, and imms just
// contains the bit number of the highest set bit of the set range. For
// values with narrower widths, these are encoded by a leading set of
// one bits, followed by a zero bit, followed by the remaining set of bits
// being the high bit of the range. For a 32-bit immediate there are no
// leading one bits, just a zero followed by a five bit number. For a
// 16-bit immediate there is one one bit, a zero bit, and then a four bit
// bit-position, etc.
if (width == 64)
immN = 1;
else
imms = 63 & ~(width + width - 1);
if (inverted) {
// if width is 64 & hsb is 62, then we have a value something like:
// 0x80000000ffffffff (in this case with lsb 32).
// The ror should be by 1, imms (effectively set width minus 1) is
// 32. Set width is full width minus cleared width.
immr = (width - 1) - hsb;
imms |= (width - ((hsb - lsb) + 1)) - 1;
} else {
// if width is 64 & hsb is 62, then we have a value something like:
// 0x7fffffff00000000 (in this case with lsb 32).
// The value is effectively rol'ed by lsb, which is equivalent to
// a ror by width - lsb (or 0, in the case where lsb is 0). imms
// is hsb - lsb.
immr = (width - lsb) & (width - 1);
imms |= hsb - lsb;
}
return immN << 12 | immr << 6 | imms;
}
static constexpr int InvalidLogicalImmediate = -1;
int m_value;
};
class ARM64FPImmediate {
public:
static ARM64FPImmediate create64(uint64_t value)
{
uint8_t result = 0;
for (unsigned i = 0; i < sizeof(double); ++i) {
uint8_t slice = static_cast<uint8_t>(value >> (8 * i));
if (!slice)
continue;
if (slice == UINT8_MAX) {
result |= (1U << i);
continue;
}
return { };
}
return ARM64FPImmediate(result);
}
bool isValid() const { return m_value.has_value(); }
uint8_t value() const
{
ASSERT(isValid());
return m_value.value();
}
private:
ARM64FPImmediate() = default;
ARM64FPImmediate(uint8_t value)
: m_value(value)
{
}
std::optional<uint8_t> m_value;
};
ALWAYS_INLINE bool isValidARMThumb2Immediate(int64_t value)
{
if (value < 0)
return false;
if (value > UINT32_MAX)
return false;
if (value < 256)
return true;
// If it can be expressed as an 8-bit number, left sifted by a constant
const int64_t mask = (value ^ (value & (value - 1))) * 0xff;
if ((value & mask) == value)
return true;
// FIXME: there are a few more valid forms, see section 4.2 in the Thumb-2 Supplement
return false;
}
enum class MachineCodeCopyMode : uint8_t {
Memcpy,
JITMemcpy,
};
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
static ALWAYS_INLINE void* memcpyAtomicIfPossible(void* dst, const void* src, size_t n)
{
#if !CPU(NEEDS_ALIGNED_ACCESS)
// We would like to do atomic write here.
switch (n) {
case 1:
WTF::atomicStore(std::bit_cast<uint8_t*>(dst), *std::bit_cast<const uint8_t*>(src), std::memory_order_relaxed);
return dst;
case 2:
WTF::atomicStore(std::bit_cast<uint16_t*>(dst), *std::bit_cast<const uint16_t*>(src), std::memory_order_relaxed);
return dst;
case 4:
WTF::atomicStore(std::bit_cast<uint32_t*>(dst), *std::bit_cast<const uint32_t*>(src), std::memory_order_relaxed);
return dst;
case 8:
WTF::atomicStore(std::bit_cast<uint64_t*>(dst), *std::bit_cast<const uint64_t*>(src), std::memory_order_relaxed);
return dst;
default:
break;
}
#endif
return memcpy(dst, src, n);
}
static void* performJITMemcpy(void* dst, const void* src, size_t n);
template<MachineCodeCopyMode copy>
ALWAYS_INLINE void* machineCodeCopy(void* dst, const void* src, size_t n)
{
#if CPU(ARM_THUMB2)
// For thumb instructions, we want to avoid the case where we have
// to repatch a 32-bit instruction that crosses 2 words.
bool isAligned = (dst == WTF::roundUpToMultipleOf<4>(dst));
if (n == 2 * sizeof(int16_t) && isAligned) {
*static_cast<uint32_t*>(dst) = *static_cast<const uint32_t*>(src);
return dst;
}
if (n == 1 * sizeof(int16_t)) {
*static_cast<uint16_t*>(dst) = *static_cast<const uint16_t*>(src);
return dst;
}
#endif
if constexpr (copy == MachineCodeCopyMode::Memcpy)
return memcpyAtomicIfPossible(dst, src, n);
else
return performJITMemcpy(dst, src, n);
}
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
} // namespace JSC.
|