1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488
|
/*
* Copyright (C) 2008-2024 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <wtf/Compiler.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
#if ENABLE(ASSEMBLER)
#include "JSCJSValue.h"
#define DEFINE_SIMD_FUNC(name, func, lane) \
template <typename ...Args> \
void name(Args&&... args) { func(lane, std::forward<Args>(args)...); }
#define DEFINE_SIMD_FUNC_WITH_SIGN_EXTEND_MODE(name, func, lane, mode) \
template <typename ...Args> \
void name(Args&&... args) { func(lane, mode, std::forward<Args>(args)...); }
#define DEFINE_SIMD_FUNCS(name) \
DEFINE_SIMD_FUNC(name##Int8, name, SIMDLane::i8x16) \
DEFINE_SIMD_FUNC(name##Int16, name, SIMDLane::i16x8) \
DEFINE_SIMD_FUNC(name##Int32, name, SIMDLane::i32x4) \
DEFINE_SIMD_FUNC(name##Int64, name, SIMDLane::i64x2) \
DEFINE_SIMD_FUNC(name##Float32, name, SIMDLane::f32x4) \
DEFINE_SIMD_FUNC(name##Float64, name, SIMDLane::f64x2)
#define DEFINE_SIGNED_SIMD_FUNCS(name) \
DEFINE_SIMD_FUNC_WITH_SIGN_EXTEND_MODE(name##SignedInt8, name, SIMDLane::i8x16, SIMDSignMode::Signed) \
DEFINE_SIMD_FUNC_WITH_SIGN_EXTEND_MODE(name##UnsignedInt8, name, SIMDLane::i8x16, SIMDSignMode::Unsigned) \
DEFINE_SIMD_FUNC_WITH_SIGN_EXTEND_MODE(name##SignedInt16, name, SIMDLane::i16x8, SIMDSignMode::Signed) \
DEFINE_SIMD_FUNC_WITH_SIGN_EXTEND_MODE(name##UnsignedInt16, name, SIMDLane::i16x8, SIMDSignMode::Unsigned) \
DEFINE_SIMD_FUNC_WITH_SIGN_EXTEND_MODE(name##Int32, name, SIMDLane::i32x4, SIMDSignMode::None) \
DEFINE_SIMD_FUNC_WITH_SIGN_EXTEND_MODE(name##Int64, name, SIMDLane::i64x2, SIMDSignMode::None) \
DEFINE_SIMD_FUNC(name##Float32, name, SIMDLane::f32x4) \
DEFINE_SIMD_FUNC(name##Float64, name, SIMDLane::f64x2)
#if CPU(ARM_THUMB2)
#define TARGET_ASSEMBLER ARMv7Assembler
#define TARGET_MACROASSEMBLER MacroAssemblerARMv7
#include "MacroAssemblerARMv7.h"
#elif CPU(ARM64E)
#define TARGET_ASSEMBLER ARM64EAssembler
#define TARGET_MACROASSEMBLER MacroAssemblerARM64E
#include "MacroAssemblerARM64E.h"
#elif CPU(ARM64)
#define TARGET_ASSEMBLER ARM64Assembler
#define TARGET_MACROASSEMBLER MacroAssemblerARM64
#include "MacroAssemblerARM64.h"
#elif CPU(X86_64)
#define TARGET_ASSEMBLER X86Assembler
#define TARGET_MACROASSEMBLER MacroAssemblerX86_64
#include "MacroAssemblerX86_64.h"
#elif CPU(RISCV64)
#define TARGET_ASSEMBLER RISCV64Assembler
#define TARGET_MACROASSEMBLER MacroAssemblerRISCV64
#include "MacroAssemblerRISCV64.h"
#else
#error "The MacroAssembler is not supported on this platform."
#endif
#include "MacroAssemblerHelpers.h"
namespace WTF {
template<typename FunctionType>
class ScopedLambda;
} // namespace WTF
namespace JSC {
namespace Probe {
enum class SavedFPWidth {
SaveVectors,
DontSaveVectors
};
class Context;
typedef void (SYSV_ABI *Function)(Context&);
} // namespace Probe
using Probe::SavedFPWidth;
namespace Printer {
struct PrintRecord;
typedef Vector<PrintRecord> PrintRecordList;
} // namespace Printer
using MacroAssemblerBase = TARGET_MACROASSEMBLER;
class MacroAssembler : public MacroAssemblerBase {
WTF_MAKE_TZONE_NON_HEAP_ALLOCATABLE(MacroAssembler);
public:
using Base = MacroAssemblerBase;
static constexpr RegisterID nextRegister(RegisterID reg)
{
return static_cast<RegisterID>(reg + 1);
}
static constexpr FPRegisterID nextFPRegister(FPRegisterID reg)
{
return static_cast<FPRegisterID>(reg + 1);
}
static constexpr unsigned registerIndex(RegisterID reg)
{
return reg - firstRegister();
}
static constexpr unsigned fpRegisterIndex(FPRegisterID reg)
{
return reg - firstFPRegister();
}
static constexpr unsigned registerIndex(FPRegisterID reg)
{
return fpRegisterIndex(reg) + numberOfRegisters();
}
static constexpr unsigned totalNumberOfRegisters()
{
return numberOfRegisters() + numberOfFPRegisters();
}
using MacroAssemblerBase::pop;
using MacroAssemblerBase::jump;
using MacroAssemblerBase::farJump;
using MacroAssemblerBase::branch32;
using MacroAssemblerBase::compare32;
using MacroAssemblerBase::move;
using MacroAssemblerBase::move32ToFloat;
using MacroAssemblerBase::moveDouble;
using MacroAssemblerBase::move64ToDouble;
using MacroAssemblerBase::add32;
using MacroAssemblerBase::mul32;
using MacroAssemblerBase::and32;
using MacroAssemblerBase::branchAdd32;
using MacroAssemblerBase::branchMul32;
#if CPU(ARM64) || CPU(ARM_THUMB2) || CPU(X86_64) || CPU(RISCV64)
using MacroAssemblerBase::branchPtr;
#endif
#if CPU(X86_64)
using MacroAssemblerBase::branch64;
#endif
#if CPU(RISCV64)
using MacroAssemblerRISCV64::lshift64;
#endif
using MacroAssemblerBase::branchSub32;
using MacroAssemblerBase::lshift32;
using MacroAssemblerBase::or32;
using MacroAssemblerBase::rshift32;
using MacroAssemblerBase::store32;
using MacroAssemblerBase::sub32;
using MacroAssemblerBase::urshift32;
using MacroAssemblerBase::xor32;
#if CPU(ARM64) || CPU(X86_64) || CPU(RISCV64) || CPU(ARM_THUMB2)
using MacroAssemblerBase::convertInt32ToDouble;
#endif
#if CPU(ARM64) || CPU(X86_64) || CPU(RISCV64)
using MacroAssemblerBase::add64;
using MacroAssemblerBase::sub64;
using MacroAssemblerBase::and64;
using MacroAssemblerBase::or64;
using MacroAssemblerBase::xor64;
using MacroAssemblerBase::store64;
using MacroAssemblerBase::compare64;
#endif
static bool isPtrAlignedAddressOffset(ptrdiff_t value)
{
return value == static_cast<int32_t>(value);
}
static const double twoToThe32; // This is super useful for some double code.
// Utilities used by the DFG JIT.
using AbstractMacroAssemblerBase::invert;
using MacroAssemblerBase::invert;
static DoubleCondition invert(DoubleCondition cond)
{
switch (cond) {
case DoubleEqualAndOrdered:
return DoubleNotEqualOrUnordered;
case DoubleNotEqualAndOrdered:
return DoubleEqualOrUnordered;
case DoubleGreaterThanAndOrdered:
return DoubleLessThanOrEqualOrUnordered;
case DoubleGreaterThanOrEqualAndOrdered:
return DoubleLessThanOrUnordered;
case DoubleLessThanAndOrdered:
return DoubleGreaterThanOrEqualOrUnordered;
case DoubleLessThanOrEqualAndOrdered:
return DoubleGreaterThanOrUnordered;
case DoubleEqualOrUnordered:
return DoubleNotEqualAndOrdered;
case DoubleNotEqualOrUnordered:
return DoubleEqualAndOrdered;
case DoubleGreaterThanOrUnordered:
return DoubleLessThanOrEqualAndOrdered;
case DoubleGreaterThanOrEqualOrUnordered:
return DoubleLessThanAndOrdered;
case DoubleLessThanOrUnordered:
return DoubleGreaterThanOrEqualAndOrdered;
case DoubleLessThanOrEqualOrUnordered:
return DoubleGreaterThanAndOrdered;
}
RELEASE_ASSERT_NOT_REACHED();
return DoubleEqualAndOrdered; // make compiler happy
}
static bool isInvertible(ResultCondition cond)
{
switch (cond) {
case Zero:
case NonZero:
case Signed:
case PositiveOrZero:
return true;
default:
return false;
}
}
static ResultCondition invert(ResultCondition cond)
{
switch (cond) {
case Zero:
return NonZero;
case NonZero:
return Zero;
case Signed:
return PositiveOrZero;
case PositiveOrZero:
return Signed;
default:
RELEASE_ASSERT_NOT_REACHED();
return Zero; // Make compiler happy for release builds.
}
}
static RelationalCondition flip(RelationalCondition cond)
{
switch (cond) {
case Equal:
case NotEqual:
return cond;
case Above:
return Below;
case AboveOrEqual:
return BelowOrEqual;
case Below:
return Above;
case BelowOrEqual:
return AboveOrEqual;
case GreaterThan:
return LessThan;
case GreaterThanOrEqual:
return LessThanOrEqual;
case LessThan:
return GreaterThan;
case LessThanOrEqual:
return GreaterThanOrEqual;
}
RELEASE_ASSERT_NOT_REACHED();
return Equal;
}
static bool isSigned(RelationalCondition cond)
{
return MacroAssemblerHelpers::isSigned<MacroAssembler>(cond);
}
static bool isUnsigned(RelationalCondition cond)
{
return MacroAssemblerHelpers::isUnsigned<MacroAssembler>(cond);
}
static bool isSigned(ResultCondition cond)
{
return MacroAssemblerHelpers::isSigned<MacroAssembler>(cond);
}
static bool isUnsigned(ResultCondition cond)
{
return MacroAssemblerHelpers::isUnsigned<MacroAssembler>(cond);
}
// Platform agnostic convenience functions,
// described in terms of other macro assembly methods.
void pop()
{
addPtr(TrustedImm32(sizeof(void*)), stackPointerRegister);
}
void peek(RegisterID dest, int index = 0)
{
loadPtr(Address(stackPointerRegister, (index * sizeof(void*))), dest);
}
Address addressForPoke(int index)
{
return Address(stackPointerRegister, (index * sizeof(void*)));
}
void poke(RegisterID src, int index = 0)
{
storePtr(src, addressForPoke(index));
}
void poke(TrustedImm32 value, int index = 0)
{
store32(value, addressForPoke(index));
}
void poke(TrustedImmPtr imm, int index = 0)
{
storePtr(imm, addressForPoke(index));
}
void poke(FPRegisterID src, int index = 0)
{
storeDouble(src, addressForPoke(index));
}
#if !CPU(ARM64)
void pushToSave(RegisterID src)
{
push(src);
}
void pushToSaveImmediateWithoutTouchingRegisters(TrustedImm32 imm)
{
push(imm);
}
void popToRestore(RegisterID dest)
{
pop(dest);
}
void pushToSave(FPRegisterID src)
{
subPtr(TrustedImm32(sizeof(double)), stackPointerRegister);
storeDouble(src, Address(stackPointerRegister));
}
void popToRestore(FPRegisterID dest)
{
loadDouble(Address(stackPointerRegister), dest);
addPtr(TrustedImm32(sizeof(double)), stackPointerRegister);
}
static constexpr ptrdiff_t pushToSaveByteOffset() { return sizeof(void*); }
#endif // !CPU(ARM64)
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
void peek64(RegisterID dest, int index = 0)
{
load64(Address(stackPointerRegister, (index * sizeof(void*))), dest);
}
void poke(TrustedImm64 value, int index = 0)
{
store64(value, addressForPoke(index));
}
void poke64(RegisterID src, int index = 0)
{
store64(src, addressForPoke(index));
}
#endif
// Immediate shifts only have 5 controllable bits
// so we'll consider them safe for now.
TrustedImm32 trustedImm32ForShift(Imm32 imm)
{
return TrustedImm32(imm.asTrustedImm32().m_value & 31);
}
// Backwards banches, these are currently all implemented using existing forwards branch mechanisms.
void branchPtr(RelationalCondition cond, RegisterID op1, TrustedImmPtr imm, Label target)
{
branchPtr(cond, op1, imm).linkTo(target, this);
}
void branchPtr(RelationalCondition cond, RegisterID op1, ImmPtr imm, Label target)
{
branchPtr(cond, op1, imm).linkTo(target, this);
}
Jump branch32(RelationalCondition cond, RegisterID left, AbsoluteAddress right)
{
return branch32(flip(cond), right, left);
}
void branch32(RelationalCondition cond, RegisterID op1, RegisterID op2, Label target)
{
branch32(cond, op1, op2).linkTo(target, this);
}
void branch32(RelationalCondition cond, RegisterID op1, TrustedImm32 imm, Label target)
{
branch32(cond, op1, imm).linkTo(target, this);
}
void branch32(RelationalCondition cond, RegisterID op1, Imm32 imm, Label target)
{
branch32(cond, op1, imm).linkTo(target, this);
}
void branch32(RelationalCondition cond, RegisterID left, Address right, Label target)
{
branch32(cond, left, right).linkTo(target, this);
}
Jump branch32(RelationalCondition cond, TrustedImm32 left, RegisterID right)
{
return branch32(commute(cond), right, left);
}
Jump branch32(RelationalCondition cond, Imm32 left, RegisterID right)
{
return branch32(commute(cond), right, left);
}
void compare32(RelationalCondition cond, Imm32 left, RegisterID right, RegisterID dest)
{
compare32(commute(cond), right, left, dest);
}
void branchTestPtr(ResultCondition cond, RegisterID reg, Label target)
{
branchTestPtr(cond, reg).linkTo(target, this);
}
#if !CPU(ARM_THUMB2) && !CPU(ARM64)
PatchableJump patchableBranchPtr(RelationalCondition cond, Address left, TrustedImmPtr right = TrustedImmPtr(nullptr))
{
padBeforePatch();
return PatchableJump(branchPtr(cond, left, right));
}
PatchableJump patchableBranchPtrWithPatch(RelationalCondition cond, Address left, DataLabelPtr& dataLabel, TrustedImmPtr initialRightValue = TrustedImmPtr(nullptr))
{
padBeforePatch();
return PatchableJump(branchPtrWithPatch(cond, left, dataLabel, initialRightValue));
}
PatchableJump patchableBranch32WithPatch(RelationalCondition cond, Address left, DataLabel32& dataLabel, TrustedImm32 initialRightValue = TrustedImm32(0))
{
padBeforePatch();
return PatchableJump(branch32WithPatch(cond, left, dataLabel, initialRightValue));
}
PatchableJump patchableJump()
{
padBeforePatch();
return PatchableJump(jump());
}
PatchableJump patchableBranchTest32(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
padBeforePatch();
return PatchableJump(branchTest32(cond, reg, mask));
}
PatchableJump patchableBranch32(RelationalCondition cond, RegisterID reg, TrustedImm32 imm)
{
padBeforePatch();
return PatchableJump(branch32(cond, reg, imm));
}
PatchableJump patchableBranch8(RelationalCondition cond, Address address, TrustedImm32 imm)
{
padBeforePatch();
return PatchableJump(branch8(cond, address, imm));
}
PatchableJump patchableBranch16(RelationalCondition cond, Address address, TrustedImm32 imm)
{
padBeforePatch();
return PatchableJump(branch16(cond, address, imm));
}
PatchableJump patchableBranch32(RelationalCondition cond, Address address, TrustedImm32 imm)
{
padBeforePatch();
return PatchableJump(branch32(cond, address, imm));
}
#endif
void jump(Label target)
{
jump().linkTo(target, this);
}
// Commute a relational condition, returns a new condition that will produce
// the same results given the same inputs but with their positions exchanged.
static RelationalCondition commute(RelationalCondition condition)
{
switch (condition) {
case Above:
return Below;
case AboveOrEqual:
return BelowOrEqual;
case Below:
return Above;
case BelowOrEqual:
return AboveOrEqual;
case GreaterThan:
return LessThan;
case GreaterThanOrEqual:
return LessThanOrEqual;
case LessThan:
return GreaterThan;
case LessThanOrEqual:
return GreaterThanOrEqual;
default:
break;
}
ASSERT(condition == Equal || condition == NotEqual);
return condition;
}
void oops()
{
abortWithReason(B3Oops);
}
// B3 has additional pseudo-opcodes for returning, when it wants to signal that the return
// consumes some register in some way.
void retVoid() { ret(); }
void ret32(RegisterID) { ret(); }
#if CPU(ARM_THUMB2)
void ret64(RegisterID, RegisterID) { ret(); }
#else
void ret64(RegisterID) { ret(); }
#endif
void retFloat(FPRegisterID) { ret(); }
void retDouble(FPRegisterID) { ret(); }
static constexpr unsigned BlindingModulus = 64;
bool shouldConsiderBlinding()
{
return !(random() & (BlindingModulus - 1));
}
void move(Address src, Address dest, RegisterID scratch)
{
loadPtr(src, scratch);
storePtr(scratch, dest);
}
void move32(Address src, Address dest, RegisterID scratch)
{
load32(src, scratch);
store32(scratch, dest);
}
void moveFloat(Address src, Address dest, FPRegisterID scratch)
{
loadFloat(src, scratch);
storeFloat(scratch, dest);
}
void moveDouble(Address src, Address dest, FPRegisterID scratch)
{
loadDouble(src, scratch);
storeDouble(scratch, dest);
}
// Ptr methods
// On 32-bit platforms (i.e. x86), these methods directly map onto their 32-bit equivalents.
#if !CPU(ADDRESS64)
void addPtr(Address src, RegisterID dest)
{
add32(src, dest);
}
void addPtr(AbsoluteAddress src, RegisterID dest)
{
add32(src, dest);
}
void addPtr(RegisterID src, RegisterID dest)
{
add32(src, dest);
}
void addPtr(RegisterID left, RegisterID right, RegisterID dest)
{
add32(left, right, dest);
}
void addPtr(TrustedImm32 imm, RegisterID srcDest)
{
add32(imm, srcDest);
}
void addPtr(TrustedImmPtr imm, RegisterID dest)
{
add32(TrustedImm32(imm), dest);
}
void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
add32(imm, src, dest);
}
void addPtr(TrustedImm32 imm, AbsoluteAddress address)
{
add32(imm, address);
}
void andPtr(RegisterID src, RegisterID dest)
{
and32(src, dest);
}
void andPtr(TrustedImm32 imm, RegisterID srcDest)
{
and32(imm, srcDest);
}
void andPtr(TrustedImmPtr imm, RegisterID srcDest)
{
and32(TrustedImm32(imm), srcDest);
}
void lshiftPtr(Imm32 imm, RegisterID srcDest)
{
lshift32(trustedImm32ForShift(imm), srcDest);
}
void lshiftPtr(TrustedImm32 imm, RegisterID srcDest)
{
lshift32(imm, srcDest);
}
void rshiftPtr(Imm32 imm, RegisterID srcDest)
{
rshift32(trustedImm32ForShift(imm), srcDest);
}
void rshiftPtr(TrustedImm32 imm, RegisterID srcDest)
{
rshift32(imm, srcDest);
}
void urshiftPtr(Imm32 imm, RegisterID srcDest)
{
urshift32(trustedImm32ForShift(imm), srcDest);
}
void urshiftPtr(RegisterID shiftAmmount, RegisterID srcDest)
{
urshift32(shiftAmmount, srcDest);
}
void negPtr(RegisterID dest)
{
neg32(dest);
}
void negPtr(RegisterID src, RegisterID dest)
{
neg32(src, dest);
}
void orPtr(RegisterID src, RegisterID dest)
{
or32(src, dest);
}
void orPtr(RegisterID op1, RegisterID op2, RegisterID dest)
{
or32(op1, op2, dest);
}
void orPtr(TrustedImmPtr imm, RegisterID dest)
{
or32(TrustedImm32(imm), dest);
}
void orPtr(TrustedImm32 imm, RegisterID dest)
{
or32(imm, dest);
}
void rotateRightPtr(TrustedImm32 imm, RegisterID srcDst)
{
rotateRight32(imm, srcDst);
}
void subPtr(RegisterID src, RegisterID dest)
{
sub32(src, dest);
}
void subPtr(RegisterID left, RegisterID right, RegisterID dest)
{
sub32(left, right, dest);
}
void subPtr(TrustedImm32 imm, RegisterID dest)
{
sub32(imm, dest);
}
void subPtr(RegisterID left, TrustedImm32 right, RegisterID dest)
{
sub32(left, right, dest);
}
void subPtr(TrustedImmPtr imm, RegisterID dest)
{
sub32(TrustedImm32(imm), dest);
}
void xorPtr(RegisterID src, RegisterID dest)
{
xor32(src, dest);
}
void xorPtr(TrustedImm32 imm, RegisterID srcDest)
{
xor32(imm, srcDest);
}
void xorPtr(TrustedImmPtr imm, RegisterID srcDest)
{
xor32(TrustedImm32(imm), srcDest);
}
void xorPtr(Address src, RegisterID dest)
{
xor32(src, dest);
}
void loadPtr(Address address, RegisterID dest)
{
load32(address, dest);
}
void loadPtr(BaseIndex address, RegisterID dest)
{
#if CPU(NEEDS_ALIGNED_ACCESS)
ASSERT(address.scale == ScalePtr || address.scale == TimesOne);
#endif
load32(address, dest);
}
void loadPtr(const void* address, RegisterID dest)
{
load32(address, dest);
}
void loadPairPtr(RegisterID src, RegisterID dest1, RegisterID dest2)
{
loadPair32(src, dest1, dest2);
}
void loadPairPtr(RegisterID src, TrustedImm32 offset, RegisterID dest1, RegisterID dest2)
{
loadPair32(src, offset, dest1, dest2);
}
void loadPairPtr(Address src, RegisterID dest1, RegisterID dest2)
{
loadPair32(src, dest1, dest2);
}
#if ENABLE(FAST_TLS_JIT)
void loadFromTLSPtr(uint32_t offset, RegisterID dst)
{
loadFromTLS32(offset, dst);
}
void storeToTLSPtr(RegisterID src, uint32_t offset)
{
storeToTLS32(src, offset);
}
#endif
void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
{
compare32(cond, left, right, dest);
}
void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
{
compare32(cond, left, right, dest);
}
void storePtr(RegisterID src, Address address)
{
store32(src, address);
}
void storePtr(RegisterID src, BaseIndex address)
{
store32(src, address);
}
void storePtr(RegisterID src, void* address)
{
store32(src, address);
}
void storePtr(TrustedImmPtr imm, Address address)
{
store32(TrustedImm32(imm), address);
}
void storePtr(ImmPtr imm, Address address)
{
store32(Imm32(imm.asTrustedImmPtr()), address);
}
void storePtr(TrustedImmPtr imm, void* address)
{
store32(TrustedImm32(imm), address);
}
void storePtr(TrustedImm32 imm, Address address)
{
store32(imm, address);
}
void storePtr(TrustedImmPtr imm, BaseIndex address)
{
store32(TrustedImm32(imm), address);
}
void storePairPtr(RegisterID src1, RegisterID src2, RegisterID dest)
{
storePair32(src1, src2, dest);
}
void storePairPtr(RegisterID src1, RegisterID src2, RegisterID dest, TrustedImm32 offset)
{
storePair32(src1, src2, dest, offset);
}
void storePairPtr(RegisterID src1, RegisterID src2, Address dest)
{
storePair32(src1, src2, dest);
}
Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right)
{
return branch32(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right)
{
return branch32(cond, left, TrustedImm32(right));
}
Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right)
{
return branch32(cond, left, Imm32(right.asTrustedImmPtr()));
}
Jump branchPtr(RelationalCondition cond, RegisterID left, Address right)
{
return branch32(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, Address left, RegisterID right)
{
return branch32(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
return branch32(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right)
{
return branch32(cond, left, TrustedImm32(right));
}
Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, TrustedImmPtr right)
{
return branch32(cond, left, TrustedImm32(right));
}
Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchSub32(cond, src, dest);
}
Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask)
{
return branchTest32(cond, reg, mask);
}
Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest32(cond, reg, mask);
}
Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest32(cond, address, mask);
}
Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest32(cond, address, mask);
}
Jump branchTestPtr(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest32(cond, address, mask);
}
Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchAdd32(cond, src, dest);
}
Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
return branchSub32(cond, imm, dest);
}
using MacroAssemblerBase::branchTest8;
Jump branchTest8(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
return MacroAssemblerBase::branchTest8(cond, Address(address.base, address.offset), mask);
}
using MacroAssemblerBase::branchTest16;
Jump branchTest16(ResultCondition cond, ExtendedAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
return MacroAssemblerBase::branchTest16(cond, Address(address.base, address.offset), mask);
}
#else // !CPU(ADDRESS64)
void addPtr(RegisterID src, RegisterID dest)
{
add64(src, dest);
}
void addPtr(RegisterID left, RegisterID right, RegisterID dest)
{
add64(left, right, dest);
}
void addPtr(Address src, RegisterID dest)
{
add64(src, dest);
}
void addPtr(TrustedImm32 imm, RegisterID srcDest)
{
add64(imm, srcDest);
}
void addPtr(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
add64(imm, src, dest);
}
void addPtr(TrustedImm32 imm, Address address)
{
add64(imm, address);
}
void addPtr(AbsoluteAddress src, RegisterID dest)
{
add64(src, dest);
}
void addPtr(TrustedImmPtr imm, RegisterID dest)
{
add64(TrustedImm64(imm), dest);
}
void addPtr(TrustedImm32 imm, AbsoluteAddress address)
{
add64(imm, address);
}
void andPtr(RegisterID src, RegisterID dest)
{
and64(src, dest);
}
void andPtr(TrustedImm32 imm, RegisterID srcDest)
{
and64(imm, srcDest);
}
void andPtr(TrustedImmPtr imm, RegisterID srcDest)
{
and64(imm, srcDest);
}
void lshiftPtr(Imm32 imm, RegisterID srcDest)
{
lshift64(trustedImm32ForShift(imm), srcDest);
}
void lshiftPtr(TrustedImm32 imm, RegisterID srcDest)
{
lshift64(imm, srcDest);
}
void lshiftPtr(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
lshift64(src, imm, dest);
}
void lshiftPtr(TrustedImm32 imm, RegisterID shiftAmount, RegisterID dest)
{
lshift64(imm, shiftAmount, dest);
}
void rshiftPtr(Imm32 imm, RegisterID srcDest)
{
rshift64(trustedImm32ForShift(imm), srcDest);
}
void rshiftPtr(TrustedImm32 imm, RegisterID srcDest)
{
rshift64(imm, srcDest);
}
void rshiftPtr(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
rshift64(src, imm, dest);
}
void urshiftPtr(Imm32 imm, RegisterID srcDest)
{
urshift64(trustedImm32ForShift(imm), srcDest);
}
void urshiftPtr(RegisterID shiftAmmount, RegisterID srcDest)
{
urshift64(shiftAmmount, srcDest);
}
void urshiftPtr(RegisterID src, TrustedImm32 imm, RegisterID dest)
{
urshift64(src, imm, dest);
}
void negPtr(RegisterID dest)
{
neg64(dest);
}
void negPtr(RegisterID src, RegisterID dest)
{
neg64(src, dest);
}
void orPtr(RegisterID src, RegisterID dest)
{
or64(src, dest);
}
void orPtr(TrustedImm32 imm, RegisterID dest)
{
or64(imm, dest);
}
void orPtr(TrustedImmPtr imm, RegisterID dest)
{
or64(TrustedImm64(imm), dest);
}
void orPtr(RegisterID op1, RegisterID op2, RegisterID dest)
{
or64(op1, op2, dest);
}
void orPtr(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
or64(imm, src, dest);
}
void rotateRightPtr(TrustedImm32 imm, RegisterID srcDst)
{
rotateRight64(imm, srcDst);
}
void subPtr(RegisterID src, RegisterID dest)
{
sub64(src, dest);
}
void subPtr(RegisterID left, RegisterID right, RegisterID dest)
{
sub64(left, right, dest);
}
void subPtr(TrustedImm32 imm, RegisterID dest)
{
sub64(imm, dest);
}
void subPtr(RegisterID left, TrustedImm32 right, RegisterID dest)
{
sub64(left, right, dest);
}
void subPtr(TrustedImmPtr imm, RegisterID dest)
{
sub64(TrustedImm64(imm), dest);
}
void xorPtr(RegisterID src, RegisterID dest)
{
xor64(src, dest);
}
void xorPtr(Address src, RegisterID dest)
{
xor64(src, dest);
}
void xorPtr(RegisterID src, Address dest)
{
xor64(src, dest);
}
void xorPtr(TrustedImm32 imm, RegisterID srcDest)
{
xor64(imm, srcDest);
}
// FIXME: Look into making the need for a scratch register explicit, or providing the option to specify a scratch register.
void xorPtr(TrustedImmPtr imm, RegisterID srcDest)
{
xor64(TrustedImm64(imm), srcDest);
}
void loadPtr(Address address, RegisterID dest)
{
load64(address, dest);
}
void loadPtr(BaseIndex address, RegisterID dest)
{
#if CPU(NEEDS_ALIGNED_ACCESS)
ASSERT(address.scale == ScalePtr || address.scale == TimesOne);
#endif
load64(address, dest);
}
void loadPtr(const void* address, RegisterID dest)
{
load64(address, dest);
}
void loadPairPtr(RegisterID src, RegisterID dest1, RegisterID dest2)
{
loadPair64(src, dest1, dest2);
}
void loadPairPtr(RegisterID src, TrustedImm32 offset, RegisterID dest1, RegisterID dest2)
{
loadPair64(src, offset, dest1, dest2);
}
void loadPairPtr(Address src, RegisterID dest1, RegisterID dest2)
{
loadPair64(src, dest1, dest2);
}
#if ENABLE(FAST_TLS_JIT)
void loadFromTLSPtr(uint32_t offset, RegisterID dst)
{
loadFromTLS64(offset, dst);
}
void storeToTLSPtr(RegisterID src, uint32_t offset)
{
storeToTLS64(src, offset);
}
#endif
void storePtr(RegisterID src, Address address)
{
store64(src, address);
}
void storePtr(RegisterID src, BaseIndex address)
{
store64(src, address);
}
void storePtr(RegisterID src, void* address)
{
store64(src, address);
}
void storePtr(TrustedImmPtr imm, Address address)
{
store64(TrustedImm64(imm), address);
}
void storePtr(TrustedImm32 imm, Address address)
{
store64(imm, address);
}
void storePtr(TrustedImmPtr imm, BaseIndex address)
{
store64(TrustedImm64(imm), address);
}
void storePairPtr(RegisterID src1, RegisterID src2, RegisterID dest)
{
storePair64(src1, src2, dest);
}
void storePairPtr(RegisterID src1, RegisterID src2, RegisterID dest, TrustedImm32 offset)
{
storePair64(src1, src2, dest, offset);
}
void storePairPtr(RegisterID src1, RegisterID src2, Address dest)
{
storePair64(src1, src2, dest);
}
void comparePtr(RelationalCondition cond, RegisterID left, TrustedImm32 right, RegisterID dest)
{
compare64(cond, left, right, dest);
}
void comparePtr(RelationalCondition cond, RegisterID left, RegisterID right, RegisterID dest)
{
compare64(cond, left, right, dest);
}
void testPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask, RegisterID dest)
{
test64(cond, reg, mask, dest);
}
void testPtr(ResultCondition cond, RegisterID reg, RegisterID mask, RegisterID dest)
{
test64(cond, reg, mask, dest);
}
Jump branchPtr(RelationalCondition cond, RegisterID left, RegisterID right)
{
return branch64(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, RegisterID left, TrustedImmPtr right)
{
return branch64(cond, left, TrustedImm64(right));
}
Jump branchPtr(RelationalCondition cond, RegisterID left, Address right)
{
return branch64(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, Address left, RegisterID right)
{
return branch64(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, AbsoluteAddress left, RegisterID right)
{
return branch64(cond, left, right);
}
Jump branchPtr(RelationalCondition cond, Address left, TrustedImmPtr right)
{
return branch64(cond, left, TrustedImm64(right));
}
Jump branchTestPtr(ResultCondition cond, RegisterID reg, RegisterID mask)
{
return branchTest64(cond, reg, mask);
}
Jump branchTestPtr(ResultCondition cond, RegisterID reg, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest64(cond, reg, mask);
}
Jump branchTestPtr(ResultCondition cond, Address address, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest64(cond, address, mask);
}
Jump branchTestPtr(ResultCondition cond, Address address, RegisterID reg)
{
return branchTest64(cond, address, reg);
}
Jump branchTestPtr(ResultCondition cond, BaseIndex address, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest64(cond, address, mask);
}
Jump branchTestPtr(ResultCondition cond, AbsoluteAddress address, TrustedImm32 mask = TrustedImm32(-1))
{
return branchTest64(cond, address, mask);
}
Jump branchAddPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
return branchAdd64(cond, imm, dest);
}
Jump branchAddPtr(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchAdd64(cond, src, dest);
}
Jump branchSubPtr(ResultCondition cond, TrustedImm32 imm, RegisterID dest)
{
return branchSub64(cond, imm, dest);
}
Jump branchSubPtr(ResultCondition cond, RegisterID src, RegisterID dest)
{
return branchSub64(cond, src, dest);
}
Jump branchSubPtr(ResultCondition cond, RegisterID src1, TrustedImm32 src2, RegisterID dest)
{
return branchSub64(cond, src1, src2, dest);
}
Jump branchPtr(RelationalCondition cond, RegisterID left, ImmPtr right)
{
if (shouldBlind(right) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(right), scratchRegister);
return branchPtr(cond, left, scratchRegister);
}
return branchPtr(cond, left, right.asTrustedImmPtr());
}
void storePtr(ImmPtr imm, Address dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
storePtr(scratchRegister, dest);
} else
storePtr(imm.asTrustedImmPtr(), dest);
}
#endif // !CPU(ADDRESS64)
#if CPU(REGISTER64)
void loadRegWord(Address address, RegisterID dest)
{
load64(address, dest);
}
void loadRegWord(BaseIndex address, RegisterID dest)
{
#if CPU(NEEDS_ALIGNED_ACCESS)
ASSERT(address.scale == ScaleRegWord || address.scale == TimesOne);
#endif
load64(address, dest);
}
void loadRegWord(const void* address, RegisterID dest)
{
load64(address, dest);
}
void storeRegWord(RegisterID src, Address address)
{
store64(src, address);
}
void storeRegWord(RegisterID src, BaseIndex address)
{
store64(src, address);
}
void storeRegWord(RegisterID src, void* address)
{
store64(src, address);
}
void storeRegWord(TrustedImm64 imm, Address address)
{
store64(imm, address);
}
#elif CPU(REGISTER32)
void loadRegWord(Address address, RegisterID dest)
{
load32(address, dest);
}
void loadRegWord(BaseIndex address, RegisterID dest)
{
#if CPU(NEEDS_ALIGNED_ACCESS)
ASSERT(address.scale == ScaleRegWord || address.scale == TimesOne);
#endif
load32(address, dest);
}
void loadRegWord(const void* address, RegisterID dest)
{
load32(address, dest);
}
void storeRegWord(RegisterID src, Address address)
{
store32(src, address);
}
void storeRegWord(RegisterID src, BaseIndex address)
{
store32(src, address);
}
void storeRegWord(RegisterID src, void* address)
{
store32(src, address);
}
void storeRegWord(TrustedImm32 imm, Address address)
{
store32(imm, address);
}
#else
# error "Unknown register size"
#endif
#if USE(JSVALUE64)
bool shouldBlindDouble(double value)
{
// Don't trust NaN or +/-Infinity
if (!std::isfinite(value))
return shouldConsiderBlinding();
// Try to force normalisation, and check that there's no change
// in the bit pattern
if (std::bit_cast<uint64_t>(value * 1.0) != std::bit_cast<uint64_t>(value))
return shouldConsiderBlinding();
value = std::abs(value);
// Only allow a limited set of fractional components
double scaledValue = value * 8;
if (scaledValue / 8 != value)
return shouldConsiderBlinding();
double frac = scaledValue - floor(scaledValue);
if (frac != 0.0)
return shouldConsiderBlinding();
return value > 0xff;
}
bool shouldBlindPointerForSpecificArch(uintptr_t value)
{
if (sizeof(void*) == 4)
return shouldBlindForSpecificArch(static_cast<uint32_t>(value));
return shouldBlindForSpecificArch(static_cast<uint64_t>(value));
}
#if CPU(X86_64)
bool shouldBlind(ImmPtr imm)
{
static_assert(canBlind());
#if ENABLE(FORCED_JIT_BLINDING)
UNUSED_PARAM(imm);
// Debug always blind all constants, if only so we know
// if we've broken blinding during patch development.
return true;
#endif
// First off we'll special case common, "safe" values to avoid hurting
// performance too much
uint64_t value = imm.asTrustedImmPtr().asIntptr();
switch (value) {
case 0xffff:
case 0xffffff:
case 0xffffffffL:
case 0xffffffffffL:
case 0xffffffffffffL:
case 0xffffffffffffffL:
case 0xffffffffffffffffL:
return false;
default: {
if (value <= 0xff)
return false;
if (~value <= 0xff)
return false;
}
}
if (!shouldConsiderBlinding())
return false;
return shouldBlindPointerForSpecificArch(static_cast<uintptr_t>(value));
}
#else
static constexpr bool shouldBlind(ImmPtr)
{
static_assert(!canBlind());
return false;
}
#endif
uint8_t generateRotationSeed(size_t widthInBits)
{
// Generate the seed in [1, widthInBits - 1]. We should not generate widthInBits or 0
// since it leads to `<< widthInBits` or `>> widthInBits`, which cause undefined behaviors.
return (random() % (widthInBits - 1)) + 1;
}
struct RotatedImmPtr {
RotatedImmPtr(uintptr_t v1, uint8_t v2)
: value(v1)
, rotation(v2)
{
}
TrustedImmPtr value;
TrustedImm32 rotation;
};
RotatedImmPtr rotationBlindConstant(ImmPtr imm)
{
uint8_t rotation = generateRotationSeed(sizeof(void*) * 8);
uintptr_t value = imm.asTrustedImmPtr().asIntptr();
value = (value << rotation) | (value >> (sizeof(void*) * 8 - rotation));
return RotatedImmPtr(value, rotation);
}
void loadRotationBlindedConstant(RotatedImmPtr constant, RegisterID dest)
{
move(constant.value, dest);
rotateRightPtr(constant.rotation, dest);
}
#if CPU(X86_64)
bool shouldBlind(Imm64 imm)
{
static_assert(canBlind());
#if ENABLE(FORCED_JIT_BLINDING)
UNUSED_PARAM(imm);
// Debug always blind all constants, if only so we know
// if we've broken blinding during patch development.
return true;
#endif
// First off we'll special case common, "safe" values to avoid hurting
// performance too much
uint64_t value = imm.asTrustedImm64().m_value;
switch (value) {
case 0xffff:
case 0xffffff:
case 0xffffffffL:
case 0xffffffffffL:
case 0xffffffffffffL:
case 0xffffffffffffffL:
case 0xffffffffffffffffL:
return false;
default: {
if (value <= 0xff)
return false;
if (~value <= 0xff)
return false;
JSValue jsValue = JSValue::decode(value);
if (jsValue.isInt32())
return shouldBlind(Imm32(jsValue.asInt32()));
if (jsValue.isDouble() && !shouldBlindDouble(jsValue.asDouble()))
return false;
if (!shouldBlindDouble(std::bit_cast<double>(value)))
return false;
}
}
if (!shouldConsiderBlinding())
return false;
return shouldBlindForSpecificArch(value);
}
#else
static constexpr bool shouldBlind(Imm64)
{
static_assert(!canBlind());
return false;
}
#endif
struct RotatedImm64 {
RotatedImm64(uint64_t v1, uint8_t v2)
: value(v1)
, rotation(v2)
{
}
TrustedImm64 value;
TrustedImm32 rotation;
};
RotatedImm64 rotationBlindConstant(Imm64 imm)
{
uint8_t rotation = generateRotationSeed(sizeof(int64_t) * 8);
uint64_t value = imm.asTrustedImm64().m_value;
value = (value << rotation) | (value >> (sizeof(int64_t) * 8 - rotation));
return RotatedImm64(value, rotation);
}
void loadRotationBlindedConstant(RotatedImm64 constant, RegisterID dest)
{
move(constant.value, dest);
rotateRight64(constant.rotation, dest);
}
void convertInt32ToDouble(Imm32 imm, FPRegisterID dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadXorBlindedConstant(xorBlindConstant(imm), scratchRegister);
convertInt32ToDouble(scratchRegister, dest);
} else
convertInt32ToDouble(imm.asTrustedImm32(), dest);
}
void move(ImmPtr imm, RegisterID dest)
{
if (shouldBlind(imm))
loadRotationBlindedConstant(rotationBlindConstant(imm), dest);
else
move(imm.asTrustedImmPtr(), dest);
}
void move(Imm64 imm, RegisterID dest)
{
if (shouldBlind(imm))
loadRotationBlindedConstant(rotationBlindConstant(imm), dest);
else
move(imm.asTrustedImm64(), dest);
}
void and64(Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 key = andBlindedConstant(imm);
and64(key.value1, dest);
and64(key.value2, dest);
} else
and64(imm.asTrustedImm32(), dest);
}
void and64(Imm32 imm, RegisterID src, RegisterID dest)
{
if (shouldBlind(imm)) {
move(src, dest);
and64(imm, dest);
} else
and64(imm.asTrustedImm32(), src, dest);
}
void and64(Imm64 imm, RegisterID dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
and64(scratchRegister, dest);
} else
and64(imm.asTrustedImm64(), dest);
}
void and64(Imm64 imm, RegisterID src, RegisterID dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
and64(scratchRegister, dest);
} else
and64(imm.asTrustedImm64(), src, dest);
}
void xor64(Imm64 imm, RegisterID dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
xor64(scratchRegister, dest);
} else
xor64(imm.asTrustedImm64(), dest);
}
void xor64(Imm64 imm, RegisterID src, RegisterID dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
xor64(scratchRegister, dest);
} else
xor64(imm.asTrustedImm64(), src, dest);
}
void or64(Imm64 imm, RegisterID dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
or64(scratchRegister, dest);
} else
or64(imm.asTrustedImm64(), dest);
}
void or64(Imm64 imm, RegisterID src, RegisterID dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
or64(scratchRegister, dest);
} else
or64(imm.asTrustedImm64(), src, dest);
}
void add64(Imm64 imm, RegisterID dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
add64(scratchRegister, dest);
} else
add64(imm.asTrustedImm64(), dest);
}
void add64(Imm64 imm, RegisterID src, RegisterID dest)
{
if (shouldBlind(imm)) {
move(src, dest);
add64(imm, dest);
} else
add64(imm.asTrustedImm64(), src, dest);
}
void sub64(Imm64 imm, RegisterID dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
sub64(scratchRegister, dest);
} else
sub64(imm.asTrustedImm64(), dest);
}
void sub64(RegisterID src, Imm64 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
move(src, dest);
sub64(imm, dest);
} else
sub64(src, imm.asTrustedImm64(), dest);
}
void compare64(RelationalCondition cond, Imm64 left, RegisterID right, RegisterID dest)
{
compare64(commute(cond), right, left, dest);
}
void compare64(RelationalCondition cond, RegisterID left, Imm64 right, RegisterID dest)
{
if (shouldBlind(right)) {
if (left != dest || haveScratchRegisterForBlinding()) {
RegisterID blindedConstantReg = dest;
if (left == dest)
blindedConstantReg = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(right), blindedConstantReg);
compare64(cond, left, blindedConstantReg, dest);
return;
}
// If we don't have a scratch register available for use, we'll just
// place a random number of nops.
uint32_t nopCount = random() & 3;
while (nopCount--)
nop();
compare64(cond, left, right.asTrustedImm64(), dest);
return;
}
compare64(cond, left, right.asTrustedImm64(), dest);
}
#endif // USE(JSVALUE64)
#if CPU(X86_64)
void move32ToFloat(Imm32 imm, FPRegisterID dest)
{
move(imm, scratchRegister());
move32ToFloat(scratchRegister(), dest);
}
void move64ToDouble(Imm64 imm, FPRegisterID dest)
{
move(imm, scratchRegister());
move64ToDouble(scratchRegister(), dest);
}
#else
void move32ToFloat(Imm32 imm, FPRegisterID dest)
{
MacroAssemblerBase::move32ToFloat(imm.asTrustedImm32(), dest);
}
void move64ToDouble(Imm64 imm, FPRegisterID dest)
{
MacroAssemblerBase::move64ToDouble(imm.asTrustedImm64(), dest);
}
#endif
#if !CPU(X86_64) && !CPU(ARM64)
// We should implement this the right way eventually, but for now, it's fine because it arises so
// infrequently.
void compareDouble(DoubleCondition cond, FPRegisterID left, FPRegisterID right, RegisterID dest)
{
move(TrustedImm32(0), dest);
Jump falseCase = branchDouble(invert(cond), left, right);
move(TrustedImm32(1), dest);
falseCase.link(this);
}
void compareDoubleWithZero(DoubleCondition cond, FPRegisterID left, RegisterID dest)
{
UNUSED_PARAM(cond);
UNUSED_PARAM(left);
UNUSED_PARAM(dest);
UNREACHABLE_FOR_PLATFORM();
}
#endif
void lea32(Address address, RegisterID dest)
{
add32(TrustedImm32(address.offset), address.base, dest);
}
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
void lea64(Address address, RegisterID dest)
{
add64(TrustedImm32(address.offset), address.base, dest);
}
#endif // CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
#if CPU(X86_64)
bool shouldBlind(Imm32 imm)
{
static_assert(canBlind());
#if ENABLE(FORCED_JIT_BLINDING)
UNUSED_PARAM(imm);
// Debug always blind all constants, if only so we know
// if we've broken blinding during patch development.
return true;
#else // ENABLE(FORCED_JIT_BLINDING)
// First off we'll special case common, "safe" values to avoid hurting
// performance too much
uint32_t value = imm.asTrustedImm32().m_value;
switch (value) {
case 0xffff:
case 0xffffff:
case 0xffffffff:
return false;
default:
if (value <= 0xff)
return false;
if (~value <= 0xff)
return false;
}
if (!shouldConsiderBlinding())
return false;
return shouldBlindForSpecificArch(value);
#endif // ENABLE(FORCED_JIT_BLINDING)
}
#else
static constexpr bool shouldBlind(Imm32)
{
static_assert(!canBlind());
return false;
}
#endif
struct BlindedImm32 {
BlindedImm32(int32_t v1, int32_t v2)
: value1(v1)
, value2(v2)
{
}
TrustedImm32 value1;
TrustedImm32 value2;
};
uint32_t keyForConstant(uint32_t value, uint32_t& mask)
{
uint32_t key = random();
if (value <= 0xff)
mask = 0xff;
else if (value <= 0xffff)
mask = 0xffff;
else if (value <= 0xffffff)
mask = 0xffffff;
else
mask = 0xffffffff;
return key & mask;
}
uint32_t keyForConstant(uint32_t value)
{
uint32_t mask = 0;
return keyForConstant(value, mask);
}
BlindedImm32 xorBlindConstant(Imm32 imm)
{
uint32_t baseValue = imm.asTrustedImm32().m_value;
uint32_t key = keyForConstant(baseValue);
return BlindedImm32(baseValue ^ key, key);
}
BlindedImm32 additionBlindedConstant(Imm32 imm)
{
// The addition immediate may be used as a pointer offset. Keep aligned based on "imm".
static const uint32_t maskTable[4] = { 0xfffffffc, 0xffffffff, 0xfffffffe, 0xffffffff };
uint32_t baseValue = imm.asTrustedImm32().m_value;
uint32_t key = keyForConstant(baseValue) & maskTable[baseValue & 3];
if (key > baseValue)
key = key - baseValue;
return BlindedImm32(baseValue - key, key);
}
BlindedImm32 andBlindedConstant(Imm32 imm)
{
uint32_t baseValue = imm.asTrustedImm32().m_value;
uint32_t mask = 0;
uint32_t key = keyForConstant(baseValue, mask);
ASSERT((baseValue & mask) == baseValue);
return BlindedImm32(((baseValue & key) | ~key) & mask, ((baseValue & ~key) | key) & mask);
}
BlindedImm32 orBlindedConstant(Imm32 imm)
{
uint32_t baseValue = imm.asTrustedImm32().m_value;
uint32_t mask = 0;
uint32_t key = keyForConstant(baseValue, mask);
ASSERT((baseValue & mask) == baseValue);
return BlindedImm32((baseValue & key) & mask, (baseValue & ~key) & mask);
}
void loadXorBlindedConstant(BlindedImm32 constant, RegisterID dest)
{
move(constant.value1, dest);
xor32(constant.value2, dest);
}
void add32(Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 key = additionBlindedConstant(imm);
add32(key.value1, dest);
add32(key.value2, dest);
} else
add32(imm.asTrustedImm32(), dest);
}
void add32(Imm32 imm, RegisterID src, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 key = additionBlindedConstant(imm);
add32(key.value1, src, dest);
add32(key.value2, dest);
} else
add32(imm.asTrustedImm32(), src, dest);
}
void addPtr(Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 key = additionBlindedConstant(imm);
addPtr(key.value1, dest);
addPtr(key.value2, dest);
} else
addPtr(imm.asTrustedImm32(), dest);
}
void mul32(Imm32 imm, RegisterID src, RegisterID dest)
{
if (shouldBlind(imm)) {
if (src != dest || haveScratchRegisterForBlinding()) {
if (src == dest) {
move(src, scratchRegisterForBlinding());
src = scratchRegisterForBlinding();
}
loadXorBlindedConstant(xorBlindConstant(imm), dest);
mul32(src, dest);
return;
}
// If we don't have a scratch register available for use, we'll just
// place a random number of nops.
uint32_t nopCount = random() & 3;
while (nopCount--)
nop();
}
mul32(imm.asTrustedImm32(), src, dest);
}
void and32(Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 key = andBlindedConstant(imm);
and32(key.value1, dest);
and32(key.value2, dest);
} else
and32(imm.asTrustedImm32(), dest);
}
void andPtr(Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 key = andBlindedConstant(imm);
andPtr(key.value1, dest);
andPtr(key.value2, dest);
} else
andPtr(imm.asTrustedImm32(), dest);
}
void and32(Imm32 imm, RegisterID src, RegisterID dest)
{
if (shouldBlind(imm)) {
if (src == dest)
return and32(imm.asTrustedImm32(), dest);
loadXorBlindedConstant(xorBlindConstant(imm), dest);
and32(src, dest);
} else
and32(imm.asTrustedImm32(), src, dest);
}
void move(Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm))
loadXorBlindedConstant(xorBlindConstant(imm), dest);
else
move(imm.asTrustedImm32(), dest);
}
void or32(Imm32 imm, RegisterID src, RegisterID dest)
{
if (shouldBlind(imm)) {
if (src == dest)
return or32(imm, dest);
loadXorBlindedConstant(xorBlindConstant(imm), dest);
or32(src, dest);
} else
or32(imm.asTrustedImm32(), src, dest);
}
void or32(Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 key = orBlindedConstant(imm);
or32(key.value1, dest);
or32(key.value2, dest);
} else
or32(imm.asTrustedImm32(), dest);
}
void poke(Imm32 value, int index = 0)
{
store32(value, addressForPoke(index));
}
void poke(ImmPtr value, int index = 0)
{
storePtr(value, addressForPoke(index));
}
#if CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
void poke(Imm64 value, int index = 0)
{
store64(value, addressForPoke(index));
}
void store64(Imm64 imm, Address dest)
{
if (shouldBlind(imm) && haveScratchRegisterForBlinding()) {
RegisterID scratchRegister = scratchRegisterForBlinding();
loadRotationBlindedConstant(rotationBlindConstant(imm), scratchRegister);
store64(scratchRegister, dest);
} else
store64(imm.asTrustedImm64(), dest);
}
#endif // CPU(X86_64) || CPU(ARM64) || CPU(RISCV64)
void store32(Imm32 imm, Address dest)
{
if (shouldBlind(imm)) {
#if CPU(X86_64)
BlindedImm32 blind = xorBlindConstant(imm);
store32(blind.value1, dest);
xor32(blind.value2, dest);
#else // CPU(X86_64)
if (haveScratchRegisterForBlinding()) {
loadXorBlindedConstant(xorBlindConstant(imm), scratchRegisterForBlinding());
store32(scratchRegisterForBlinding(), dest);
} else {
// If we don't have a scratch register available for use, we'll just
// place a random number of nops.
uint32_t nopCount = random() & 3;
while (nopCount--)
nop();
store32(imm.asTrustedImm32(), dest);
}
#endif // CPU(X86_64)
} else
store32(imm.asTrustedImm32(), dest);
}
void sub32(Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 key = additionBlindedConstant(imm);
sub32(key.value1, dest);
sub32(key.value2, dest);
} else
sub32(imm.asTrustedImm32(), dest);
}
void sub32(RegisterID src, Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 key = additionBlindedConstant(imm);
sub32(src, key.value1, dest);
sub32(key.value2, dest);
} else
sub32(src, imm.asTrustedImm32(), dest);
}
void subPtr(Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 key = additionBlindedConstant(imm);
subPtr(key.value1, dest);
subPtr(key.value2, dest);
} else
subPtr(imm.asTrustedImm32(), dest);
}
void xor32(Imm32 imm, RegisterID src, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 blind = xorBlindConstant(imm);
xor32(blind.value1, src, dest);
xor32(blind.value2, dest);
} else
xor32(imm.asTrustedImm32(), src, dest);
}
void xor32(Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
BlindedImm32 blind = xorBlindConstant(imm);
xor32(blind.value1, dest);
xor32(blind.value2, dest);
} else
xor32(imm.asTrustedImm32(), dest);
}
Jump branch32(RelationalCondition cond, RegisterID left, Imm32 right)
{
if (shouldBlind(right)) {
if (haveScratchRegisterForBlinding()) {
loadXorBlindedConstant(xorBlindConstant(right), scratchRegisterForBlinding());
return branch32(cond, left, scratchRegisterForBlinding());
}
// If we don't have a scratch register available for use, we'll just
// place a random number of nops.
uint32_t nopCount = random() & 3;
while (nopCount--)
nop();
return branch32(cond, left, right.asTrustedImm32());
}
return branch32(cond, left, right.asTrustedImm32());
}
#if CPU(X86_64)
// Other 64-bit platforms don't need blinding, and have branch64(RelationalCondition, RegisterID, Imm64) directly defined in the right file.
// We cannot put this in MacroAssemblerX86_64.h, because it uses shouldBlind(), loadRoationBlindedConstant, etc.. which are only defined here and not there.
Jump branch64(RelationalCondition cond, RegisterID left, Imm64 right)
{
if (shouldBlind(right)) {
if (haveScratchRegisterForBlinding()) {
loadRotationBlindedConstant(rotationBlindConstant(right), scratchRegisterForBlinding());
return branch64(cond, left, scratchRegisterForBlinding());
}
// If we don't have a scratch register available for use, we'll just
// place a random number of nops.
uint32_t nopCount = random() & 3;
while (nopCount--)
nop();
return branch64(cond, left, right.asTrustedImm64());
}
return branch64(cond, left, right.asTrustedImm64());
}
#endif // CPU(X86_64)
void compare32(RelationalCondition cond, RegisterID left, Imm32 right, RegisterID dest)
{
if (shouldBlind(right)) {
if (left != dest || haveScratchRegisterForBlinding()) {
RegisterID blindedConstantReg = dest;
if (left == dest)
blindedConstantReg = scratchRegisterForBlinding();
loadXorBlindedConstant(xorBlindConstant(right), blindedConstantReg);
compare32(cond, left, blindedConstantReg, dest);
return;
}
// If we don't have a scratch register available for use, we'll just
// place a random number of nops.
uint32_t nopCount = random() & 3;
while (nopCount--)
nop();
compare32(cond, left, right.asTrustedImm32(), dest);
return;
}
compare32(cond, left, right.asTrustedImm32(), dest);
}
Jump branchAdd32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest)
{
if (shouldBlind(imm)) {
if (src != dest || haveScratchRegisterForBlinding()) {
if (src == dest) {
move(src, scratchRegisterForBlinding());
src = scratchRegisterForBlinding();
}
loadXorBlindedConstant(xorBlindConstant(imm), dest);
return branchAdd32(cond, src, dest);
}
// If we don't have a scratch register available for use, we'll just
// place a random number of nops.
uint32_t nopCount = random() & 3;
while (nopCount--)
nop();
}
return branchAdd32(cond, src, imm.asTrustedImm32(), dest);
}
Jump branchMul32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest)
{
if (src == dest)
ASSERT(haveScratchRegisterForBlinding());
if (shouldBlind(imm)) {
if (src == dest) {
move(src, scratchRegisterForBlinding());
src = scratchRegisterForBlinding();
}
loadXorBlindedConstant(xorBlindConstant(imm), dest);
return branchMul32(cond, src, dest);
}
return branchMul32(cond, src, imm.asTrustedImm32(), dest);
}
// branchSub32 takes a scratch register as 32 bit platforms make use of this,
// with src == dst, and on x86-32 we don't have a platform scratch register.
Jump branchSub32(ResultCondition cond, RegisterID src, Imm32 imm, RegisterID dest, RegisterID scratch)
{
if (shouldBlind(imm)) {
ASSERT(scratch != dest);
ASSERT(scratch != src);
loadXorBlindedConstant(xorBlindConstant(imm), scratch);
return branchSub32(cond, src, scratch, dest);
}
return branchSub32(cond, src, imm.asTrustedImm32(), dest);
}
void lshift32(Imm32 imm, RegisterID dest)
{
lshift32(trustedImm32ForShift(imm), dest);
}
void lshift32(RegisterID src, Imm32 amount, RegisterID dest)
{
lshift32(src, trustedImm32ForShift(amount), dest);
}
void lshift32(Imm32 amount, RegisterID shiftAmount, RegisterID dest)
{
lshift32(trustedImm32ForShift(amount), shiftAmount, dest);
}
void rshift32(Imm32 imm, RegisterID dest)
{
rshift32(trustedImm32ForShift(imm), dest);
}
void rshift32(RegisterID src, Imm32 amount, RegisterID dest)
{
rshift32(src, trustedImm32ForShift(amount), dest);
}
void urshift32(Imm32 imm, RegisterID dest)
{
urshift32(trustedImm32ForShift(imm), dest);
}
void urshift32(RegisterID src, Imm32 amount, RegisterID dest)
{
urshift32(src, trustedImm32ForShift(amount), dest);
}
void mul32(TrustedImm32 imm, RegisterID src, RegisterID dest)
{
if (hasOneBitSet(imm.m_value)) {
lshift32(src, TrustedImm32(getLSBSet(imm.m_value)), dest);
return;
}
MacroAssemblerBase::mul32(imm, src, dest);
}
void jitAssert(const WTF::ScopedLambda<Jump(void)>&);
// This function emits code to preserve the CPUState (e.g. registers),
// call a user supplied probe function, and restore the CPUState before
// continuing with other JIT generated code.
//
// The user supplied probe function will be called with a single pointer to
// a Probe::State struct (defined below) which contains, among other things,
// the preserved CPUState. This allows the user probe function to inspect
// the CPUState at that point in the JIT generated code.
//
// If the user probe function alters the register values in the Probe::State,
// the altered values will be loaded into the CPU registers when the probe
// returns.
//
// The Probe::State is stack allocated and is only valid for the duration
// of the call to the user probe function.
//
// The probe function may choose to move the stack pointer (in any direction).
// To do this, the probe function needs to set the new sp value in the CPUState.
//
// The probe function may also choose to fill stack space with some values.
// To do this, the probe function must first:
// 1. Set the new sp value in the Probe::State's CPUState.
// 2. Set the Probe::State's initializeStackFunction to a Probe::Function callback
// which will do the work of filling in the stack values after the probe
// trampoline has adjusted the machine stack pointer.
// 3. Set the Probe::State's initializeStackArgs to any value that the client wants
// to pass to the initializeStackFunction callback.
// 4. Return from the probe function.
//
// Upon returning from the probe function, the probe trampoline will adjust the
// the stack pointer based on the sp value in CPUState. If initializeStackFunction
// is not set, the probe trampoline will restore registers and return to its caller.
//
// If initializeStackFunction is set, the trampoline will move the Probe::State
// beyond the range of the stack pointer i.e. it will place the new Probe::State at
// an address lower than where CPUState.sp() points. This ensures that the
// Probe::State will not be trashed by the initializeStackFunction when it writes to
// the stack. Then, the trampoline will call back to the initializeStackFunction
// Probe::Function to let it fill in the stack values as desired. The
// initializeStackFunction Probe::Function will be passed the moved Probe::State at
// the new location.
//
// initializeStackFunction may now write to the stack at addresses greater or
// equal to CPUState.sp(), but not below that. initializeStackFunction is also
// not allowed to change CPUState.sp(). If the initializeStackFunction does not
// abide by these rules, then behavior is undefined, and bad things may happen.
//
// Note: this version of probe() should be implemented by the target specific
// MacroAssembler.
void probe(Probe::Function, void* arg, SavedFPWidth = SavedFPWidth::DontSaveVectors);
// This leaks memory. Must not be used for production.
JS_EXPORT_PRIVATE void probeDebug(Function<void(Probe::Context&)>);
JS_EXPORT_PRIVATE void probeDebugSIMD(Function<void(Probe::Context&)>);
// Let's you print from your JIT generated code.
// See comments in MacroAssemblerPrinter.h for examples of how to use this.
void print(auto&&... args);
void println(auto&&... args);
void print(Printer::PrintRecordList*);
template<PtrTag tag>
void nearCallThunk(CodeLocationLabel<tag> label)
{
nearCall().linkThunk(label, this);
}
template<PtrTag tag>
void nearTailCallThunk(CodeLocationLabel<tag> label)
{
nearTailCall().linkThunk(label, this);
}
template<PtrTag tag>
void jumpThunk(CodeLocationLabel<tag> label)
{
jump().linkThunk(label, this);
}
};
} // namespace JSC
namespace WTF {
class PrintStream;
void printInternal(PrintStream&, JSC::MacroAssembler::RelationalCondition);
void printInternal(PrintStream&, JSC::MacroAssembler::ResultCondition);
void printInternal(PrintStream&, JSC::MacroAssembler::DoubleCondition);
} // namespace WTF
#else // ENABLE(ASSEMBLER)
namespace JSC {
// If there is no assembler for this platform, at least allow code to make references to
// some of the things it would otherwise define, albeit without giving that code any way
// of doing anything useful.
class MacroAssembler {
private:
MacroAssembler() { }
public:
enum RegisterID : int8_t { NoRegister, InvalidGPRReg = -1 };
enum FPRegisterID : int8_t { NoFPRegister, InvalidFPRReg = -1 };
};
} // namespace JSC
#endif // ENABLE(ASSEMBLER)
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
|