1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
/*
* Copyright (C) 2022 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "SecureARM64EHashPins.h"
#include "ExecutableAllocator.h"
#include "FastJITPermissions.h"
#include "SecureARM64EHashPinsInlines.h"
#include <wtf/Condition.h>
#include <wtf/Lock.h>
namespace JSC {
#if CPU(ARM64E) && ENABLE(JIT)
struct WriteToJITRegionScope {
ALWAYS_INLINE WriteToJITRegionScope()
{
threadSelfRestrict<MemoryRestriction::kRwxToRw>();
}
ALWAYS_INLINE ~WriteToJITRegionScope()
{
threadSelfRestrict<MemoryRestriction::kRwxToRx>();
}
};
struct ValidateNonReentrancyScope {
ALWAYS_INLINE ValidateNonReentrancyScope(SecureARM64EHashPins::Metadata* metadata)
: m_metadata(metadata)
{
uint32_t validateNonReentrancy = m_metadata->assertNotReentrant.exchange(1, std::memory_order_seq_cst);
RELEASE_ASSERT(!validateNonReentrancy);
}
ALWAYS_INLINE ~ValidateNonReentrancyScope()
{
uint32_t validateNonReentrancy = m_metadata->assertNotReentrant.exchange(0, std::memory_order_seq_cst);
RELEASE_ASSERT(validateNonReentrancy == 1);
}
SecureARM64EHashPins::Metadata* m_metadata;
};
// This class is allocated once per process, so static lock is ok.
static Lock hashPinsLock;
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
ALWAYS_INLINE static ExecutableMemoryHandle::MemoryPtr allocateInExecutableMemory(size_t size)
{
ExecutableMemoryHandle* handle = ExecutableAllocator::singleton().allocate(size, JITCompilationMustSucceed).leakRef();
RELEASE_ASSERT(handle);
void* memory = handle->start().untaggedPtr<char*>();
RELEASE_ASSERT(isJITPC(memory) && isJITPC(std::bit_cast<char*>(memory) + size - 1));
return handle->start();
}
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
ALWAYS_INLINE SecureARM64EHashPins::Page::Page()
{
for (unsigned i = 0; i < numEntriesPerPage; ++i) {
auto& entry = this->entry(i);
entry.pin = 0;
entry.key = 0;
}
}
static ALWAYS_INLINE void initializePage(const WriteToJITRegionScope&, SecureARM64EHashPins::Page* page)
{
new (page) SecureARM64EHashPins::Page;
}
#define VALIDATE_THIS_VALUE() RELEASE_ASSERT(this == &g_jscConfig.arm64eHashPins)
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
ALWAYS_INLINE auto SecureARM64EHashPins::metadata() -> Metadata*
{
VALIDATE_THIS_VALUE();
return std::bit_cast<Metadata*>(m_memory) - 1;
}
void SecureARM64EHashPins::initializeAtStartup()
{
if (!g_jscConfig.useFastJITPermissions)
return;
VALIDATE_THIS_VALUE();
RELEASE_ASSERT(!m_memory);
m_memory = allocateInExecutableMemory(sizeof(Metadata) + Page::allocationSize()).untaggedPtr<char*>() + sizeof(Metadata);
{
WriteToJITRegionScope writeScope;
new (metadata()) Metadata;
initializePage(writeScope, firstPage());
}
}
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
bool SecureARM64EHashPins::allocatePinForCurrentThreadImpl(const AbstractLocker&)
{
VALIDATE_THIS_VALUE();
size_t newEntryIndex;
Page* newEntryPage;
bool found = false;
size_t baseIndex = 0;
forEachPage([&] (Page& page) {
size_t bit = page.findClearBit();
if (bit < numEntriesPerPage) {
found = true;
newEntryIndex = baseIndex + bit;
newEntryPage = &page;
return IterationStatus::Done;
}
baseIndex += numEntriesPerPage;
return IterationStatus::Continue;
});
if (!found)
return false;
auto findResult = findFirstEntry();
Entry* preexistingEntry = findResult.entry;
size_t preexistingEntryIndex = findResult.index;
Page* preexistingEntryPage = findResult.page;
{
auto* metadata = this->metadata();
WriteToJITRegionScope writeScope;
ValidateNonReentrancyScope validateNonReentrancy(metadata);
RELEASE_ASSERT(isJITPC(metadata));
uint64_t nextPin = metadata->nextPin.exchangeAdd(1, std::memory_order_seq_cst);
RELEASE_ASSERT(nextPin);
newEntryPage->setIsInUse(newEntryIndex);
if (preexistingEntry && preexistingEntryIndex < newEntryIndex) {
RELEASE_ASSERT(preexistingEntryPage->isInUse(preexistingEntryIndex));
newEntryPage->entry(newEntryIndex) = *preexistingEntry;
newEntryIndex = preexistingEntryIndex;
newEntryPage = preexistingEntryPage;
}
auto& entry = newEntryPage->entry(newEntryIndex);
entry.pin = nextPin;
entry.key = keyForCurrentThread();
}
return true;
}
void SecureARM64EHashPins::allocatePinForCurrentThread()
{
if (!g_jscConfig.useFastJITPermissions)
return;
VALIDATE_THIS_VALUE();
Locker locker { hashPinsLock };
if (allocatePinForCurrentThreadImpl(locker))
return;
// Allocate a new page
{
Page* lastPage = firstPage();
while (lastPage->next)
lastPage = lastPage->next;
RELEASE_ASSERT(!lastPage->next);
auto newPage = allocateInExecutableMemory(Page::allocationSize());
{
WriteToJITRegionScope writeScope;
ValidateNonReentrancyScope validateNonReentrancy(metadata());
initializePage(writeScope, newPage.untaggedPtr<Page*>());
// This can be read from concurrently. Make sure it's in a good state for that to happen.
WTF::storeStoreFence();
lastPage->next = newPage.untaggedPtr<Page*>();
}
}
bool success = allocatePinForCurrentThreadImpl(locker);
RELEASE_ASSERT(success);
}
void SecureARM64EHashPins::deallocatePinForCurrentThread()
{
if (!g_jscConfig.useFastJITPermissions)
return;
VALIDATE_THIS_VALUE();
Locker locker { hashPinsLock };
auto clear = [] (Entry& entry) {
entry.pin = 0;
entry.key = 0;
};
Page* removalPage;
size_t removalIndex;
{
auto findResult = findFirstEntry();
Entry& entry = *findResult.entry;
removalIndex = findResult.index;
removalPage = findResult.page;
WriteToJITRegionScope writeScope;
ValidateNonReentrancyScope validateNonReentrancy(metadata());
clear(entry);
removalPage->clearIsInUse(removalIndex);
}
// This implementation allows recursive uses of the MacroAssembler, forming a stack
// like data structure. The in use pin (top of the stack) will always be at the lowest
// page and lowest index in the bit vector. So when we deallocate the current top of the
// stack, we need to find the next entry in the stack, and ensure it's at the lowest index.
// So if there are other entries for this current thread, we find the one with the highest
// pin (next top of stack value), and replace it at the index we were using before.
// Allocation also maintains this invariant by always placing the newest entry for
// the current thread at the lowest index.
{
uint64_t key = keyForCurrentThread();
bool found = false;
uint64_t maxPin = 0;
size_t maxIndex = std::numeric_limits<size_t>::max();
Page* maxPage = nullptr;
forEachEntry([&] (Page& page, Entry& entry, size_t index) {
RELEASE_ASSERT(entry.pin);
if (entry.key == key && entry.pin > maxPin) {
found = true;
maxPin = entry.pin;
maxIndex = index;
maxPage = &page;
}
return IterationStatus::Continue;
});
if (found) {
RELEASE_ASSERT(removalIndex < maxIndex);
WriteToJITRegionScope writeScope;
ValidateNonReentrancyScope validateNonReentrancy(metadata());
removalPage->entry(removalIndex) = maxPage->entry(maxIndex);
clear(maxPage->entry(maxIndex));
maxPage->clearIsInUse(maxIndex);
removalPage->setIsInUse(removalIndex);
}
}
}
#endif // CPU(ARM64E) && ENABLE(JIT)
} // namespace JSC
|