1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304
|
/*
* Copyright (C) 2019 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "B3OptimizeAssociativeExpressionTrees.h"
#if ENABLE(B3_JIT)
#include "B3BasicBlock.h"
#include "B3Const32Value.h"
#include "B3Const64Value.h"
#include "B3InsertionSetInlines.h"
#include "B3Opcode.h"
#include "B3PhaseScope.h"
#include "B3Procedure.h"
#include "B3Value.h"
#include "B3ValueInlines.h"
namespace JSC { namespace B3 {
class OptimizeAssociativeExpressionTrees {
public:
OptimizeAssociativeExpressionTrees(Procedure& proc)
: m_proc(proc)
{
}
bool run();
private:
int64_t neutralElement(Opcode);
bool isAbsorbingElement(Opcode, int64_t);
void combineConstants(Opcode, int64_t&, int64_t);
void emitValue(Opcode, Value*, unsigned numSeen, InsertionSet&, size_t indexInBlock, Vector<Value*, 4>& results);
bool optimizeRootedTree(Value* root, InsertionSet&, size_t indexInBlock, const Vector<unsigned>& useCounts);
Procedure& m_proc;
static constexpr bool verbose { false };
};
int64_t OptimizeAssociativeExpressionTrees::neutralElement(Opcode op)
{
switch (op) {
case Add:
case BitOr:
case BitXor:
return 0;
case Mul:
return 1;
case BitAnd:
return -1;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
bool OptimizeAssociativeExpressionTrees::isAbsorbingElement(Opcode op, int64_t constant)
{
switch (op) {
case Add:
case BitXor:
return false;
case Mul:
case BitAnd:
return !constant;
case BitOr:
return constant == -1;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void OptimizeAssociativeExpressionTrees::combineConstants(Opcode op, int64_t& const1, int64_t const2)
{
switch (op) {
case Add:
const1 += const2;
break;
case Mul:
const1 *= const2;
break;
case BitAnd:
const1 &= const2;
break;
case BitOr:
const1 |= const2;
break;
case BitXor:
const1 ^= const2;
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
void OptimizeAssociativeExpressionTrees::emitValue(Opcode op, Value* value, unsigned numSeen, InsertionSet& insertionSet, size_t indexInBlock, Vector<Value*, 4>& results)
{
switch (op) {
case Add:
if (numSeen > 1) {
Value* constNumSeen;
if (value->type() == Int32)
constNumSeen = insertionSet.insert<Const32Value>(indexInBlock, value->origin(), numSeen);
else
constNumSeen = insertionSet.insert<Const64Value>(indexInBlock, value->origin(), static_cast<int64_t>(numSeen));
results.append(insertionSet.insert<Value>(indexInBlock, Mul, value->origin(), value, constNumSeen));
} else
results.append(value);
break;
case Mul:
for (unsigned i = 0; i < numSeen; ++i)
results.append(value);
break;
case BitAnd:
case BitOr:
results.append(value);
break;
case BitXor:
if (numSeen % 2)
results.append(value);
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
bool OptimizeAssociativeExpressionTrees::optimizeRootedTree(Value* root, InsertionSet& insertionSet, size_t indexInBlock, const Vector<unsigned>& useCounts)
{
Opcode op = root->opcode();
if ((root->child(0)->opcode() != op || useCounts[root->child(0)->index()] > 1)
&& (root->child(1)->opcode() != op || useCounts[root->child(1)->index()] > 1)) {
// This is a trivial expression tree of size two, we have nothing to do here that B3ReduceStrength cannot do better than us.
return false;
}
// We proceed in three steps:
// - gather all the leaves of the expression tree
// - sort them, and combine as many as possible
// - make a balanced binary tree of them
Vector<Value*, 4> leaves;
Vector<Value*, 3> worklist = { root->child(0), root->child(1) };
int64_t constant = neutralElement(op);
unsigned numVisited = 0;
while (!worklist.isEmpty()) {
Value* val = worklist.takeLast();
if (val->opcode() == op && useCounts[val->index()] < 2) {
worklist.append(val->child(0));
worklist.append(val->child(1));
} else if (val->hasInt()) {
combineConstants(op, constant, val->asInt());
numVisited++;
} else {
numVisited++;
leaves.append(val);
}
}
if (isAbsorbingElement(op, constant)) {
Value* newRoot;
if (root->type() == Int32)
newRoot = insertionSet.insert<Const32Value>(indexInBlock, root->origin(), static_cast<int32_t>(constant));
else
newRoot = insertionSet.insert<Const64Value>(indexInBlock, root->origin(), constant);
root->replaceWithIdentity(newRoot);
return true;
}
if (numVisited < 4) {
// This is a nearly-trivial expression of size 3. B3ReduceStrength is still able to deal with such expressions competently, and there is no possible win from balancing them.
return false;
}
std::sort(leaves.begin(), leaves.end(), [](Value* x, Value* y) {
return x->index() < y->index();
});
Vector<Value*, 4> optLeaves;
Value* lastValue = nullptr;
unsigned numSeen = 0;
for (Value* value : leaves) {
if (lastValue == value)
numSeen++;
else {
if (lastValue)
emitValue(op, lastValue, numSeen, insertionSet, indexInBlock, optLeaves);
lastValue = value;
numSeen = 1;
}
}
if (lastValue)
emitValue(op, lastValue, numSeen, insertionSet, indexInBlock, optLeaves);
// optLeaves can be empty for trees of BitXor where all leaves happen an even number of times.
// In that case, we make the whole tree equivalent to the neutral element (which is 0 for BitXor).
if (constant != neutralElement(op) || optLeaves.isEmpty()) {
if (root->type() == Int32)
optLeaves.append(insertionSet.insert<Const32Value>(indexInBlock, root->origin(), static_cast<int32_t>(constant)));
else
optLeaves.append(insertionSet.insert<Const64Value>(indexInBlock, root->origin(), constant));
}
if (verbose) {
dataLog(" Expression tree rooted at ", *root, " (", root->opcode(), ") with leaves (numVisited = ", numVisited, ") ");
for (Value* leaf : leaves)
dataLog(" ", *leaf);
dataLog(" =>");
for (Value* leaf : optLeaves)
dataLog(" ", *leaf);
dataLog("\n");
}
// Finally we can build the balanced binary tree
unsigned leafIndex = 0;
while (leafIndex + 1 < optLeaves.size()) {
optLeaves.append(insertionSet.insert<Value>(indexInBlock, op, root->origin(), optLeaves[leafIndex], optLeaves[leafIndex + 1]));
leafIndex += 2;
}
ASSERT(leafIndex == optLeaves.size() - 1);
root->replaceWithIdentity(optLeaves[leafIndex]);
return true;
}
bool OptimizeAssociativeExpressionTrees::run()
{
bool changed = false;
// We proceed in two phases.
// In the first one we compute the use counts of each value (of an interesting opcode), and find potential roots of interesting expression trees.
// In the second one we optimize each such expression tree in turn.
// We need the use counts to avoid duplicating code.
m_proc.resetValueOwners();
Vector<unsigned> useCounts(m_proc.values().size(), 0); // Mapping from Value::m_index to use counts.
UncheckedKeyHashSet<Value*> expressionTreeRoots;
UncheckedKeyHashSet<BasicBlock*> rootOwners;
for (BasicBlock* block : m_proc) {
for (Value* value : *block) {
for (Value* child : value->children()) {
if (!child->isInteger())
continue;
switch (child->opcode()) {
case Mul:
case Add:
case BitAnd:
case BitOr:
case BitXor:
useCounts[child->index()]++;
if (child->opcode() != value->opcode() || useCounts[child->index()] > 1) {
expressionTreeRoots.add(child);
rootOwners.add(child->owner);
}
break;
default:
break;
}
}
}
}
InsertionSet insertionSet = InsertionSet(m_proc);
for (BasicBlock* block : rootOwners) {
for (unsigned index = 0; index < block->size(); ++index) {
Value* value = block->at(index);
if (expressionTreeRoots.contains(value))
changed |= optimizeRootedTree(value, insertionSet, index, useCounts);
}
insertionSet.execute(block);
}
return changed;
}
bool optimizeAssociativeExpressionTrees(Procedure& proc)
{
PhaseScope phaseScope(proc, "optimizeAssociativeExpressionTrees"_s);
OptimizeAssociativeExpressionTrees optimizeAssociativeExpressionTrees(proc);
return optimizeAssociativeExpressionTrees.run();
}
} } // namespace JSC::B3
#endif // ENABLE(B3_JIT)
|