File: B3ReduceDoubleToFloat.cpp

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (523 lines) | stat: -rw-r--r-- 19,478 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
/*
 * Copyright (C) 2015-2019 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#include "config.h"
#include "B3ReduceDoubleToFloat.h"

#if ENABLE(B3_JIT)

#include "B3BasicBlock.h"
#include "B3InsertionSetInlines.h"
#include "B3PhaseScope.h"
#include "B3UseCounts.h"
#include "B3ValueInlines.h"
#include <wtf/IndexSet.h>

namespace JSC { namespace B3 {

namespace {

namespace B3ReduceDoubleToFloatInternal {
static constexpr bool verbose = false;
}
bool printRemainingConversions = false;

class DoubleToFloatReduction {
public:
    DoubleToFloatReduction(Procedure& procedure)
        : m_procedure(procedure)
    {
    }

    void run()
    {
        if (!findCandidates())
            return;

        findPhisContainingFloat();

        simplify();

        cleanUp();
    }

private:
    // This step find values that are used as Double and cannot be converted to Float..
    // It flows the information backward through Phi-Upsilons.
    bool findCandidates()
    {
        bool foundConversionCandidate = false;
        Vector<Value*, 32> upsilons;

        // First, we find all values that are strictly used as double.
        // Those are values used by something else than DoubleToFloat.
        //
        // We don't know the state of Upsilons until their Phi has been
        // set. We just keep a list of them and update them next.
        for (BasicBlock* block : m_procedure) {
            for (Value* value : *block) {
                value->performSubstitution();

                if (value->opcode() == DoubleToFloat) {
                    foundConversionCandidate = true;

                    Value* child = value->child(0);
                    if (child->opcode() == FloatToDouble) {
                        // We don't really need to simplify this early but it simplifies debugging.
                        value->replaceWithIdentity(child->child(0));
                    }
                    continue;
                }

                if (value->opcode() == FloatToDouble)
                    foundConversionCandidate = true;

                if (value->opcode() == Upsilon) {
                    Value* child = value->child(0);
                    if (child->type() == Double)
                        upsilons.append(value);
                    continue;
                }

                for (Value* child : value->children()) {
                    if (child->type() == Double)
                        m_valuesUsedAsDouble.add(child);
                }
            }
        }

        if (!foundConversionCandidate)
            return false;

        // Now we just need to propagate through Phi-Upsilon.
        // A Upsilon can convert its input to float if its phi is never used as double.
        // If we modify a phi, we need to continue until all the Upsilon-Phi converge.
        bool changedPhiState;
        do {
            changedPhiState = false;
            for (Value* value : upsilons) {
                UpsilonValue* upsilon = value->as<UpsilonValue>();
                Value* phi = upsilon->phi();
                if (!m_valuesUsedAsDouble.contains(phi))
                    continue;

                Value* child = value->child(0);
                bool childChanged = m_valuesUsedAsDouble.add(child);
                if (childChanged && child->opcode() == Phi)
                    changedPhiState = true;
            }
        } while (changedPhiState);

        if (B3ReduceDoubleToFloatInternal::verbose) {
            dataLog("Conversion candidates:\n");
            for (BasicBlock* block : m_procedure) {
                for (Value* value : *block) {
                    if (value->type() == Double && !m_valuesUsedAsDouble.contains(value))
                        dataLog("    ", deepDump(m_procedure, value), "\n");
                }
            }
            dataLog("\n");
        }

        return true;
    }

    // This step finds Phis of type Double that effectively contains Float values.
    // It flows that information forward through Phi-Upsilons.
    void findPhisContainingFloat()
    {
        Vector<Value*, 32> upsilons;

        // The Double value that can be safely turned into a Float are:
        // - FloatToDouble
        // - ConstDouble with a value that converts to Float without losing precision.
        for (BasicBlock* block : m_procedure) {
            for (Value* value : *block) {
                if (value->opcode() != Upsilon)
                    continue;

                Value* child = value->child(0);
                if (child->type() != Double
                    || child->opcode() == FloatToDouble)
                    continue;

                if (child->hasDouble()) {
                    double constValue = child->asDouble();
                    if (isIdentical(static_cast<double>(static_cast<float>(constValue)), constValue))
                        continue;
                }

                if (child->opcode() == Phi) {
                    upsilons.append(value);
                    continue;
                }

                UpsilonValue* upsilon = value->as<UpsilonValue>();
                Value* phi = upsilon->phi();
                m_phisContainingDouble.add(phi);
            }
        }

        // Propagate the flags forward.
        bool changedPhiState;
        do {
            changedPhiState = false;
            for (Value* value : upsilons) {
                Value* child = value->child(0);
                if (m_phisContainingDouble.contains(child)) {
                    UpsilonValue* upsilon = value->as<UpsilonValue>();
                    Value* phi = upsilon->phi();
                    changedPhiState |= m_phisContainingDouble.add(phi);
                }
            }
        } while (changedPhiState);

        if (B3ReduceDoubleToFloatInternal::verbose) {
            dataLog("Phis containing float values:\n");
            for (BasicBlock* block : m_procedure) {
                for (Value* value : *block) {
                    if (value->opcode() == Phi
                        && value->type() == Double
                        && !m_phisContainingDouble.contains(value))
                        dataLog("    ", deepDump(m_procedure, value), "\n");
                }
            }
            dataLog("\n");
        }
    }

    bool canBeTransformedToFloat(Value* value)
    {
        if (value->opcode() == FloatToDouble)
            return true;

        if (value->hasDouble()) {
            // When comparing double and float, some range of double values will be truncated into one float.
            // So we need to ensure that this double value is one-on-one representation to the original double.
            // Let's consider the case,
            //
            //     Equal(Double: 1.1, FloatToDouble(Float: 1.1))
            //
            // This should be false. This is because
            //
            //     static_cast<double>(static_cast<float>(1.1)) != 1.1
            //
            double constValue = value->asDouble();
            return isIdentical(static_cast<double>(static_cast<float>(constValue)), constValue);
        }

        if (value->opcode() == Phi) {
            return value->type() == Float
                || (value->type() == Double && !m_phisContainingDouble.contains(value));
        }
        return false;
    }

    Value* transformToFloat(Value* value, unsigned valueIndex, InsertionSet& insertionSet)
    {
        ASSERT(canBeTransformedToFloat(value));
        if (value->opcode() == FloatToDouble)
            return value->child(0);

        if (value->hasDouble())
            return insertionSet.insert<ConstFloatValue>(valueIndex, value->origin(), static_cast<float>(value->asDouble()));

        if (value->opcode() == Phi) {
            ASSERT(value->type() == Double || value->type() == Float);
            if (value->type() == Double)
                convertPhi(value);
            return value;
        }
        RELEASE_ASSERT_NOT_REACHED();
        return nullptr;
    }

    void convertPhi(Value* phi)
    {
        ASSERT(phi->opcode() == Phi);
        ASSERT(phi->type() == Double);
        phi->setType(Float);
        m_convertedPhis.add(phi);
    }

    bool attemptTwoOperandsSimplify(Value* candidate, unsigned candidateIndex, InsertionSet& insertionSet)
    {
        Value* left = candidate->child(0);
        Value* right = candidate->child(1);
        if (!canBeTransformedToFloat(left) || !canBeTransformedToFloat(right))
            return false;

        if (left->hasDouble() && right->hasDouble()) {
            // If both inputs are constants, converting them to floats and performing
            // the same operation is incorrect. It may produce a different value
            // depending on the operation and the inputs. There are inputs where
            // casting to float and performing the operation would result in the
            // same value. Regardless, we don't prove when that is legal here since
            // it isn't profitable to do. We leave it to strength reduction to handle
            // reduce these cases.
            return false;
        }

        m_convertedValue.add(candidate);
        candidate->child(0) = transformToFloat(left, candidateIndex, insertionSet);
        candidate->child(1) = transformToFloat(right, candidateIndex, insertionSet);
        return true;
    }

    // Simplify Double operations into Float operations.
    void simplify()
    {
        Vector<Value*, 32> upsilonReferencingDoublePhi;

        InsertionSet insertionSet(m_procedure);
        for (BasicBlock* block : m_procedure) {
            for (unsigned index = 0; index < block->size(); ++index) {
                Value* value = block->at(index);

                switch (value->opcode()) {
                case Equal:
                case NotEqual:
                case LessThan:
                case GreaterThan:
                case LessEqual:
                case GreaterEqual:
                case EqualOrUnordered:
                    attemptTwoOperandsSimplify(value, index, insertionSet);
                    continue;
                case Upsilon: {
                    Value* child = value->child(0);
                    if (child->opcode() == Phi && child->type() == Double)
                        upsilonReferencingDoublePhi.append(value);
                    continue;
                }
                default:
                    break;
                }

                if (m_valuesUsedAsDouble.contains(value))
                    continue;

                switch (value->opcode()) {
                case Add:
                case Sub:
                case Mul:
                case Div:
                    if (attemptTwoOperandsSimplify(value, index, insertionSet))
                        value->setType(Float);
                    break;
                case PurifyNaN:
                case Abs:
                case Ceil:
                case Floor:
                case FTrunc:
                case Neg:
                case Sqrt: {
                    Value* child = value->child(0);
                    if (canBeTransformedToFloat(child)) {
                        value->child(0) = transformToFloat(child, index, insertionSet);
                        value->setType(Float);
                        m_convertedValue.add(value);
                    }
                    break;
                }
                case IToD: {
                    Value* iToF = insertionSet.insert<Value>(index, IToF, value->origin(), value->child(0));
                    value->setType(Float);
                    value->replaceWithIdentity(iToF);
                    m_convertedValue.add(value);
                    break;
                }
                case FloatToDouble:
                    // This happens if we round twice.
                    // Typically, this is indirect through Phi-Upsilons.
                    // The Upsilon rounds and the Phi rounds.
                    value->setType(Float);
                    value->replaceWithIdentity(value->child(0));
                    m_convertedValue.add(value);
                    break;
                case Phi:
                    // If a Phi is always converted to Float, we always make it into a float Phi-Upsilon.
                    // This is a simplistic view of things. Ideally we should keep type that will minimize
                    // the amount of conversion in the loop.
                    if (value->type() == Double)
                        convertPhi(value);
                    break;
                default:
                    break;
                }
            }
            insertionSet.execute(block);
        }

        if (!upsilonReferencingDoublePhi.isEmpty()) {
            // If a Phi contains Float values typed as Double, but is not used as Float
            // by a non-trivial operation, we did not convert it.
            //
            // We fix that now by converting the remaining phis that contains
            // float but where not converted to float.
            bool changedPhi;
            do {
                changedPhi = false;

                for (Value* value : upsilonReferencingDoublePhi) {
                    UpsilonValue* upsilon = value->as<UpsilonValue>();
                    Value* child = value->child(0);
                    Value* phi = upsilon->phi();
                    if (phi->type() == Float && child->type() == Double
                        && !m_phisContainingDouble.contains(child)) {
                        convertPhi(child);
                        changedPhi = true;
                    }
                }

            } while (changedPhi);
        }
    }

    // We are in an inconsistent state where we have
    // DoubleToFloat nodes over values producing float and Phis that are
    // float for Upsilons that are Double.
    //
    // This steps puts us back in a consistent state.
    void cleanUp()
    {
        InsertionSet insertionSet(m_procedure);

        for (BasicBlock* block : m_procedure) {
            for (unsigned index = 0; index < block->size(); ++index) {
                Value* value = block->at(index);
                if (value->opcode() == DoubleToFloat && value->child(0)->type() == Float) {
                    value->replaceWithIdentity(value->child(0));
                    continue;
                }

                if (value->opcode() == Upsilon) {
                    UpsilonValue* upsilon = value->as<UpsilonValue>();
                    Value* child = value->child(0);
                    Value* phi = upsilon->phi();

                    if (phi->type() == Float) {
                        if (child->type() == Double) {
                            Value* newChild = nullptr;
                            if (child->opcode() == FloatToDouble)
                                newChild = child->child(0);
                            else if (child->hasDouble())
                                newChild = insertionSet.insert<ConstFloatValue>(index, child->origin(), static_cast<float>(child->asDouble()));
                            else
                                newChild = insertionSet.insert<Value>(index, DoubleToFloat, upsilon->origin(), child);
                            upsilon->child(0) = newChild;
                        }
                        continue;
                    }
                }

                if (!m_convertedValue.contains(value)) {
                    // Phis can be converted from Double to Float if the value they contain
                    // is not more precise than a Float.
                    // If the value is needed as Double, it has to be converted back.
                    for (Value*& child : value->children()) {
                        if (m_convertedPhis.contains(child))
                            child = insertionSet.insert<Value>(index, FloatToDouble, value->origin(), child);
                    }
                }
            }
            insertionSet.execute(block);
        }
    }

    Procedure& m_procedure;

    // Set of all the Double values that are actually used as Double.
    // Converting any of them to Float would lose precision.
    IndexSet<Value*> m_valuesUsedAsDouble;

    // Set of all the Phi of type Double that really contains a Double.
    // Any Double Phi not in the set can be converted to Float without losing precision.
    IndexSet<Value*> m_phisContainingDouble;

    // Any value that was converted from producing a Double to producing a Float.
    // This set does not include Phi-Upsilons.
    IndexSet<Value*> m_convertedValue;

    // Any value that previously produced Double and now produce Float.
    IndexSet<Value*> m_convertedPhis;
};

void printGraphIfConverting(Procedure& procedure)
{
    if (!printRemainingConversions)
        return;

    UseCounts useCount(procedure);

    Vector<Value*> doubleToFloat;
    Vector<Value*> floatToDouble;

    for (BasicBlock* block : procedure) {
        for (Value* value : *block) {
            if (!useCount.numUses(value))
                continue;

            if (value->opcode() == DoubleToFloat)
                doubleToFloat.append(value);
            if (value->opcode() == FloatToDouble)
                floatToDouble.append(value);
        }
    }

    if (doubleToFloat.isEmpty() && floatToDouble.isEmpty())
        return;

    dataLog("Procedure with Float-Double conversion:\n", procedure, "\n");
    dataLog("Converting nodes:\n");
    for (Value* value : doubleToFloat)
        dataLog("    ", deepDump(procedure, value), "\n");
    for (Value* value : floatToDouble)
        dataLog("    ", deepDump(procedure, value), "\n");

}

} // anonymous namespace.

void reduceDoubleToFloat(Procedure& procedure)
{
    PhaseScope phaseScope(procedure, "reduceDoubleToFloat"_s);

    if (B3ReduceDoubleToFloatInternal::verbose)
        dataLog("Before DoubleToFloatReduction:\n", procedure, "\n");

    DoubleToFloatReduction doubleToFloatReduction(procedure);
    doubleToFloatReduction.run();

    if (B3ReduceDoubleToFloatInternal::verbose)
        dataLog("After DoubleToFloatReduction:\n", procedure, "\n");

    printGraphIfConverting(procedure);
}

} } // namespace JSC::B3

#endif // ENABLE(B3_JIT)