1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/*
* Copyright (C) 2016-2020 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "GPRInfo.h"
#include "JSCJSValue.h"
#include "ResultType.h"
#include "TagRegistersMode.h"
namespace JSC {
class CCallHelpers;
struct ObservedType {
constexpr ObservedType(uint8_t bits = TypeEmpty)
: m_bits(bits)
{ }
constexpr bool sawInt32() const { return m_bits & TypeInt32; }
constexpr bool isOnlyInt32() const { return m_bits == TypeInt32; }
constexpr bool sawNumber() const { return m_bits & TypeNumber; }
constexpr bool isOnlyNumber() const { return m_bits == TypeNumber; }
constexpr bool sawNonNumber() const { return m_bits & TypeNonNumber; }
constexpr bool isOnlyNonNumber() const { return m_bits == TypeNonNumber; }
constexpr bool isEmpty() const { return !m_bits; }
constexpr uint8_t bits() const { return m_bits; }
constexpr ObservedType withInt32() const { return ObservedType(m_bits | TypeInt32); }
constexpr ObservedType withNumber() const { return ObservedType(m_bits | TypeNumber); }
constexpr ObservedType withNonNumber() const { return ObservedType(m_bits | TypeNonNumber); }
constexpr ObservedType withoutNonNumber() const { return ObservedType(m_bits & ~TypeNonNumber); }
friend constexpr bool operator==(const ObservedType&, const ObservedType&) = default;
static constexpr uint8_t TypeEmpty = 0x0;
static constexpr uint8_t TypeInt32 = 0x1;
static constexpr uint8_t TypeNumber = 0x02;
static constexpr uint8_t TypeNonNumber = 0x04;
static constexpr uint32_t numBitsNeeded = 3;
private:
uint8_t m_bits { 0 };
};
class ObservedResults {
public:
enum Tags : uint8_t {
NonNegZeroDouble = 1 << 0,
NegZeroDouble = 1 << 1,
NonNumeric = 1 << 2,
Int32Overflow = 1 << 3,
Int52Overflow = 1 << 4,
HeapBigInt = 1 << 5,
BigInt32 = 1 << 6,
};
static constexpr uint32_t numBitsNeeded = 7;
ObservedResults() = default;
explicit ObservedResults(uint8_t bits)
: m_bits(bits)
{ }
bool didObserveNonInt32() { return m_bits & (NonNegZeroDouble | NegZeroDouble | NonNumeric | HeapBigInt | BigInt32); }
bool didObserveDouble() { return m_bits & (NonNegZeroDouble | NegZeroDouble); }
bool didObserveNonNegZeroDouble() { return m_bits & NonNegZeroDouble; }
bool didObserveNegZeroDouble() { return m_bits & NegZeroDouble; }
bool didObserveNonNumeric() { return m_bits & NonNumeric; }
bool didObserveBigInt() { return m_bits & (HeapBigInt | BigInt32); }
bool didObserveHeapBigInt() { return m_bits & HeapBigInt; }
bool didObserveBigInt32() { return m_bits & BigInt32; }
bool didObserveInt32Overflow() { return m_bits & Int32Overflow; }
bool didObserveInt52Overflow() { return m_bits & Int52Overflow; }
private:
uint8_t m_bits { 0 };
};
template <typename BitfieldType>
class ArithProfile {
public:
ObservedResults observedResults() const
{
return ObservedResults(m_bits & ((1 << ObservedResults::numBitsNeeded) - 1));
}
bool didObserveNonInt32() const { return observedResults().didObserveNonInt32();}
bool didObserveDouble() const { return observedResults().didObserveDouble(); }
bool didObserveNonNegZeroDouble() const { return observedResults().didObserveNonNegZeroDouble(); }
bool didObserveNegZeroDouble() const { return observedResults().didObserveNegZeroDouble(); }
bool didObserveNonNumeric() const { return observedResults().didObserveNonNumeric(); }
bool didObserveBigInt() const { return observedResults().didObserveBigInt(); }
bool didObserveHeapBigInt() const { return observedResults().didObserveHeapBigInt(); }
bool didObserveBigInt32() const { return observedResults().didObserveBigInt32(); }
bool didObserveInt32Overflow() const { return observedResults().didObserveInt32Overflow(); }
bool didObserveInt52Overflow() const { return observedResults().didObserveInt52Overflow(); }
void setObservedNonNegZeroDouble() { setBit(ObservedResults::NonNegZeroDouble); }
void setObservedNegZeroDouble() { setBit(ObservedResults::NegZeroDouble); }
void setObservedNonNumeric() { setBit(ObservedResults::NonNumeric); }
void setObservedHeapBigInt() { setBit(ObservedResults::HeapBigInt); }
void setObservedBigInt32() { setBit(ObservedResults::BigInt32); }
void setObservedInt32Overflow() { setBit(ObservedResults::Int32Overflow); }
void setObservedInt52Overflow() { setBit(ObservedResults::Int52Overflow); }
void observeResult(JSValue value)
{
if (value.isInt32())
return;
if (value.isNumber()) {
m_bits |= ObservedResults::Int32Overflow | ObservedResults::Int52Overflow | ObservedResults::NonNegZeroDouble | ObservedResults::NegZeroDouble;
return;
}
if (value.isBigInt32()) {
m_bits |= ObservedResults::BigInt32;
return;
}
if (value && value.isHeapBigInt()) {
m_bits |= ObservedResults::HeapBigInt;
return;
}
m_bits |= ObservedResults::NonNumeric;
}
const void* addressOfBits() const { return &m_bits; }
#if ENABLE(JIT)
// Sets (Int32Overflow | Int52Overflow | NonNegZeroDouble | NegZeroDouble) if it sees a
// double. Sets NonNumeric if it sees a non-numeric.
void emitObserveResult(CCallHelpers&, JSValueRegs, GPRReg tempGPR, TagRegistersMode = HaveTagRegisters);
// Sets (Int32Overflow | Int52Overflow | NonNegZeroDouble | NegZeroDouble).
bool shouldEmitSetDouble() const;
void emitSetDouble(CCallHelpers&, GPRReg scratchGPR) const;
void emitSetNonNumeric(CCallHelpers&) const;
bool shouldEmitSetNonNumeric() const;
bool shouldEmitSetHeapBigInt() const;
void emitSetHeapBigInt(CCallHelpers&) const;
bool shouldEmitSetBigInt32() const;
#if USE(BIGINT32)
void emitSetBigInt32(CCallHelpers&) const;
#endif
void emitUnconditionalSet(CCallHelpers&, BitfieldType) const;
void emitUnconditionalSet(CCallHelpers&, GPRReg) const;
#endif // ENABLE(JIT)
constexpr uint32_t bits() const { return m_bits; }
protected:
ArithProfile() = default;
bool hasBits(int mask) const { return m_bits & mask; }
void setBit(int mask) { m_bits |= mask; }
BitfieldType m_bits { 0 }; // We take care to update m_bits only in a single operation. We don't ever store an inconsistent bit representation to it.
};
/* This class stores the following components in 16 bits:
* - ObservedResults
* - ObservedType for the argument
*/
using UnaryArithProfileBase = uint16_t;
class UnaryArithProfile : public ArithProfile<UnaryArithProfileBase> {
static constexpr unsigned argObservedTypeShift = ObservedResults::numBitsNeeded;
static_assert(argObservedTypeShift + ObservedType::numBitsNeeded <= sizeof(UnaryArithProfileBase) * 8, "Should fit in the type of the underlying bitfield.");
static constexpr UnaryArithProfileBase clearArgObservedTypeBitMask = static_cast<UnaryArithProfileBase>(~(0b111 << argObservedTypeShift));
static constexpr UnaryArithProfileBase observedTypeMask = (1 << ObservedType::numBitsNeeded) - 1;
public:
UnaryArithProfile()
: ArithProfile<UnaryArithProfileBase>()
{
ASSERT(argObservedType().isEmpty());
ASSERT(argObservedType().isEmpty());
}
static constexpr UnaryArithProfileBase observedIntBits()
{
constexpr ObservedType observedInt32 { ObservedType().withInt32() };
constexpr UnaryArithProfileBase bits = observedInt32.bits() << argObservedTypeShift;
return bits;
}
static constexpr UnaryArithProfileBase observedNumberBits()
{
constexpr ObservedType observedNumber { ObservedType().withNumber() };
constexpr UnaryArithProfileBase bits = observedNumber.bits() << argObservedTypeShift;
return bits;
}
static constexpr UnaryArithProfileBase observedNonNumberBits()
{
constexpr ObservedType observedNumber { ObservedType().withNonNumber() };
constexpr UnaryArithProfileBase bits = observedNumber.bits() << argObservedTypeShift;
return bits;
}
constexpr ObservedType argObservedType() const { return ObservedType((m_bits >> argObservedTypeShift) & observedTypeMask); }
void setArgObservedType(ObservedType type)
{
UnaryArithProfileBase bits = m_bits;
bits &= clearArgObservedTypeBitMask;
bits |= type.bits() << argObservedTypeShift;
m_bits = bits;
ASSERT(argObservedType() == type);
}
void argSawInt32() { setArgObservedType(argObservedType().withInt32()); }
void argSawNumber() { setArgObservedType(argObservedType().withNumber()); }
void argSawNonNumber() { setArgObservedType(argObservedType().withNonNumber()); }
void observeArg(JSValue arg)
{
UnaryArithProfile newProfile = *this;
if (arg.isNumber()) {
if (arg.isInt32())
newProfile.argSawInt32();
else
newProfile.argSawNumber();
} else
newProfile.argSawNonNumber();
m_bits = newProfile.bits();
}
bool isObservedTypeEmpty()
{
return argObservedType().isEmpty();
}
friend class JSC::LLIntOffsetsExtractor;
};
/* This class stores the following components in 16 bits:
* - ObservedResults
* - ObservedType for right-hand-side
* - ObservedType for left-hand-side
* - a bit used by division to indicate whether a special fast path was taken
*/
using BinaryArithProfileBase = uint16_t;
class BinaryArithProfile : public ArithProfile<BinaryArithProfileBase> {
static constexpr uint32_t rhsObservedTypeShift = ObservedResults::numBitsNeeded;
static constexpr uint32_t lhsObservedTypeShift = rhsObservedTypeShift + ObservedType::numBitsNeeded;
static_assert(ObservedType::numBitsNeeded == 3, "We make a hard assumption about that here.");
static constexpr BinaryArithProfileBase clearRhsObservedTypeBitMask = static_cast<BinaryArithProfileBase>(~(0b111 << rhsObservedTypeShift));
static constexpr BinaryArithProfileBase clearLhsObservedTypeBitMask = static_cast<BinaryArithProfileBase>(~(0b111 << lhsObservedTypeShift));
static constexpr BinaryArithProfileBase observedTypeMask = (1 << ObservedType::numBitsNeeded) - 1;
public:
static constexpr BinaryArithProfileBase specialFastPathBit = 1 << (lhsObservedTypeShift + ObservedType::numBitsNeeded);
static_assert((lhsObservedTypeShift + ObservedType::numBitsNeeded + 1) <= sizeof(BinaryArithProfileBase) * 8, "Should fit in the underlying type.");
static_assert(!(specialFastPathBit & ~clearLhsObservedTypeBitMask), "These bits should not intersect.");
static_assert(specialFastPathBit & clearLhsObservedTypeBitMask, "These bits should intersect.");
static_assert(static_cast<unsigned>(specialFastPathBit) > static_cast<unsigned>(static_cast<BinaryArithProfileBase>(~clearLhsObservedTypeBitMask)), "These bits should not intersect and specialFastPathBit should be a higher bit.");
BinaryArithProfile()
: ArithProfile<BinaryArithProfileBase> ()
{
ASSERT(lhsObservedType().isEmpty());
ASSERT(rhsObservedType().isEmpty());
}
static constexpr BinaryArithProfileBase observedIntIntBits()
{
constexpr ObservedType observedInt32 { ObservedType().withInt32() };
constexpr BinaryArithProfileBase bits = (observedInt32.bits() << lhsObservedTypeShift) | (observedInt32.bits() << rhsObservedTypeShift);
return bits;
}
static constexpr BinaryArithProfileBase observedNumberIntBits()
{
constexpr ObservedType observedNumber { ObservedType().withNumber() };
constexpr ObservedType observedInt32 { ObservedType().withInt32() };
constexpr BinaryArithProfileBase bits = (observedNumber.bits() << lhsObservedTypeShift) | (observedInt32.bits() << rhsObservedTypeShift);
return bits;
}
static constexpr BinaryArithProfileBase observedIntNumberBits()
{
constexpr ObservedType observedNumber { ObservedType().withNumber() };
constexpr ObservedType observedInt32 { ObservedType().withInt32() };
constexpr BinaryArithProfileBase bits = (observedInt32.bits() << lhsObservedTypeShift) | (observedNumber.bits() << rhsObservedTypeShift);
return bits;
}
static constexpr BinaryArithProfileBase observedNumberNumberBits()
{
constexpr ObservedType observedNumber { ObservedType().withNumber() };
constexpr BinaryArithProfileBase bits = (observedNumber.bits() << lhsObservedTypeShift) | (observedNumber.bits() << rhsObservedTypeShift);
return bits;
}
constexpr ObservedType lhsObservedType() const { return ObservedType((m_bits >> lhsObservedTypeShift) & observedTypeMask); }
constexpr ObservedType rhsObservedType() const { return ObservedType((m_bits >> rhsObservedTypeShift) & observedTypeMask); }
void setLhsObservedType(ObservedType type)
{
BinaryArithProfileBase bits = m_bits;
bits &= clearLhsObservedTypeBitMask;
bits |= type.bits() << lhsObservedTypeShift;
m_bits = bits;
ASSERT(lhsObservedType() == type);
}
void setRhsObservedType(ObservedType type)
{
BinaryArithProfileBase bits = m_bits;
bits &= clearRhsObservedTypeBitMask;
bits |= type.bits() << rhsObservedTypeShift;
m_bits = bits;
ASSERT(rhsObservedType() == type);
}
bool tookSpecialFastPath() const { return m_bits & specialFastPathBit; }
void lhsSawInt32() { setLhsObservedType(lhsObservedType().withInt32()); }
void lhsSawNumber() { setLhsObservedType(lhsObservedType().withNumber()); }
void lhsSawNonNumber() { setLhsObservedType(lhsObservedType().withNonNumber()); }
void rhsSawInt32() { setRhsObservedType(rhsObservedType().withInt32()); }
void rhsSawNumber() { setRhsObservedType(rhsObservedType().withNumber()); }
void rhsSawNonNumber() { setRhsObservedType(rhsObservedType().withNonNumber()); }
void observeLHS(JSValue lhs)
{
BinaryArithProfile newProfile = *this;
if (lhs.isNumber()) {
if (lhs.isInt32())
newProfile.lhsSawInt32();
else
newProfile.lhsSawNumber();
} else
newProfile.lhsSawNonNumber();
m_bits = newProfile.bits();
}
void observeLHSAndRHS(JSValue lhs, JSValue rhs)
{
observeLHS(lhs);
BinaryArithProfile newProfile = *this;
if (rhs.isNumber()) {
if (rhs.isInt32())
newProfile.rhsSawInt32();
else
newProfile.rhsSawNumber();
} else
newProfile.rhsSawNonNumber();
m_bits = newProfile.bits();
}
bool isObservedTypeEmpty()
{
return lhsObservedType().isEmpty() && rhsObservedType().isEmpty();
}
friend class JSC::LLIntOffsetsExtractor;
};
} // namespace JSC
namespace WTF {
void printInternal(PrintStream&, const JSC::UnaryArithProfile&);
void printInternal(PrintStream&, const JSC::BinaryArithProfile&);
void printInternal(PrintStream&, const JSC::ObservedType&);
} // namespace WTF
|