1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
/*
* Copyright (C) 2016 Yusuke Suzuki <utatane.tea@gmail.com>
* Copyright (C) 2016-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "BytecodeGeneratorification.h"
#include "BytecodeDumper.h"
#include "BytecodeGeneratorBaseInlines.h"
#include "BytecodeLivenessAnalysisInlines.h"
#include "BytecodeRewriter.h"
#include "BytecodeStructs.h"
#include "BytecodeUseDef.h"
#include "JSGenerator.h"
#include "Label.h"
#include "StrongInlines.h"
#include "UnlinkedCodeBlockGenerator.h"
#include "UnlinkedMetadataTableInlines.h"
namespace JSC {
struct YieldData {
JSInstructionStream::Offset point { 0 };
VirtualRegister argument { 0 };
FastBitVector liveness;
};
class BytecodeGeneratorification {
public:
typedef Vector<YieldData> Yields;
struct GeneratorFrameData {
JSInstructionStream::Offset m_point;
VirtualRegister m_dst;
VirtualRegister m_scope;
VirtualRegister m_symbolTable;
VirtualRegister m_initialValue;
};
BytecodeGeneratorification(BytecodeGenerator& bytecodeGenerator, UnlinkedCodeBlockGenerator* codeBlock, JSInstructionStreamWriter& instructions, SymbolTable* generatorFrameSymbolTable, int generatorFrameSymbolTableIndex)
: m_bytecodeGenerator(bytecodeGenerator)
, m_codeBlock(codeBlock)
, m_instructions(instructions)
, m_graph(m_codeBlock, m_instructions)
, m_generatorFrameSymbolTable(codeBlock->vm(), generatorFrameSymbolTable)
, m_generatorFrameSymbolTableIndex(generatorFrameSymbolTableIndex)
{
for (const auto& instruction : m_instructions) {
switch (instruction->opcodeID()) {
case op_enter: {
m_enterPoint = instruction.offset();
break;
}
case op_yield: {
auto bytecode = instruction->as<OpYield>();
unsigned liveCalleeLocalsIndex = bytecode.m_yieldPoint;
if (liveCalleeLocalsIndex >= m_yields.size())
m_yields.grow(liveCalleeLocalsIndex + 1);
YieldData& data = m_yields[liveCalleeLocalsIndex];
data.point = instruction.offset();
data.argument = bytecode.m_argument;
break;
}
case op_create_generator_frame_environment: {
auto bytecode = instruction->as<OpCreateGeneratorFrameEnvironment>();
GeneratorFrameData data;
data.m_point = instruction.offset();
data.m_dst = bytecode.m_dst;
data.m_scope = bytecode.m_scope;
data.m_symbolTable = bytecode.m_symbolTable;
data.m_initialValue = bytecode.m_initialValue;
m_generatorFrameData = WTFMove(data);
break;
}
default:
break;
}
}
}
struct Storage {
Identifier identifier;
unsigned identifierIndex;
ScopeOffset scopeOffset;
};
void run();
BytecodeGraph& graph() { return m_graph; }
const Yields& yields() const
{
return m_yields;
}
Yields& yields()
{
return m_yields;
}
JSInstructionStream::Ref enterPoint() const
{
return m_instructions.at(m_enterPoint);
}
std::optional<GeneratorFrameData> generatorFrameData() const
{
return m_generatorFrameData;
}
const JSInstructionStream& instructions() const
{
return m_instructions;
}
private:
Storage storageForGeneratorLocal(VM& vm, unsigned index)
{
// We assign a symbol to a register. There is one-on-one corresponding between a register and a symbol.
// By doing so, we allocate the specific storage to save the given register.
// This allow us not to save all the live registers even if the registers are not overwritten from the previous resuming time.
// It means that, the register can be retrieved even if the immediate previous op_save does not save it.
if (m_storages.size() <= index)
m_storages.grow(index + 1);
if (std::optional<Storage> storage = m_storages[index])
return *storage;
Identifier identifier = Identifier::from(vm, index);
unsigned identifierIndex = m_codeBlock->numberOfIdentifiers();
m_codeBlock->addIdentifier(identifier);
ScopeOffset scopeOffset = m_generatorFrameSymbolTable->takeNextScopeOffset(NoLockingNecessary);
m_generatorFrameSymbolTable->set(NoLockingNecessary, identifier.impl(), SymbolTableEntry(VarOffset(scopeOffset)));
Storage storage = {
identifier,
identifierIndex,
scopeOffset
};
m_storages[index] = storage;
return storage;
}
BytecodeGenerator& m_bytecodeGenerator;
JSInstructionStream::Offset m_enterPoint;
std::optional<GeneratorFrameData> m_generatorFrameData;
UnlinkedCodeBlockGenerator* m_codeBlock;
JSInstructionStreamWriter& m_instructions;
BytecodeGraph m_graph;
Vector<std::optional<Storage>> m_storages;
Yields m_yields;
Strong<SymbolTable> m_generatorFrameSymbolTable;
int m_generatorFrameSymbolTableIndex;
};
class GeneratorLivenessAnalysis : public BytecodeLivenessPropagation {
public:
GeneratorLivenessAnalysis(BytecodeGeneratorification& generatorification)
: m_generatorification(generatorification)
{
}
void run(UnlinkedCodeBlockGenerator* codeBlock, JSInstructionStreamWriter& instructions)
{
// Perform modified liveness analysis to determine which locals are live at the merge points.
// This produces the conservative results for the question, "which variables should be saved and resumed?".
runLivenessFixpoint(codeBlock, instructions, m_generatorification.graph());
for (YieldData& data : m_generatorification.yields())
data.liveness = getLivenessInfoAtInstruction(codeBlock, instructions, m_generatorification.graph(), BytecodeIndex(m_generatorification.instructions().at(data.point).next().offset()));
}
private:
BytecodeGeneratorification& m_generatorification;
};
void BytecodeGeneratorification::run()
{
// We calculate the liveness at each merge point. This gives us the information which registers should be saved and resumed conservatively.
VM& vm = m_bytecodeGenerator.vm();
{
GeneratorLivenessAnalysis pass(*this);
pass.run(m_codeBlock, m_instructions);
}
BytecodeRewriter rewriter(m_bytecodeGenerator, m_graph, m_codeBlock, m_instructions);
// Setup the global switch for the generator.
{
auto nextToEnterPoint = enterPoint().next();
unsigned switchTableIndex = m_codeBlock->numberOfUnlinkedSwitchJumpTables();
VirtualRegister state = virtualRegisterForArgumentIncludingThis(static_cast<int32_t>(JSGenerator::Argument::State));
auto& jumpTable = m_codeBlock->addUnlinkedSwitchJumpTable();
jumpTable.m_min = 0;
jumpTable.m_branchOffsets = FixedVector<int32_t>(m_yields.size() + 1);
std::fill(jumpTable.m_branchOffsets.begin(), jumpTable.m_branchOffsets.end(), 0);
jumpTable.add(0, nextToEnterPoint.offset());
for (unsigned i = 0; i < m_yields.size(); ++i)
jumpTable.add(i + 1, m_yields[i].point);
jumpTable.m_defaultOffset = nextToEnterPoint.offset();
rewriter.insertFragmentBefore(nextToEnterPoint, [&] (BytecodeRewriter::Fragment& fragment) {
fragment.appendInstruction<OpSwitchImm>(switchTableIndex, state);
});
}
for (const YieldData& data : m_yields) {
VirtualRegister scope = virtualRegisterForArgumentIncludingThis(static_cast<int32_t>(JSGenerator::Argument::Frame));
auto instruction = m_instructions.at(data.point);
// Emit save sequence.
rewriter.insertFragmentBefore(instruction, [&] (BytecodeRewriter::Fragment& fragment) {
data.liveness.forEachSetBit([&](size_t index) {
VirtualRegister operand = virtualRegisterForLocal(index);
Storage storage = storageForGeneratorLocal(vm, index);
fragment.appendInstruction<OpPutToScope>(
scope, // scope
storage.identifierIndex, // identifier
operand, // value
GetPutInfo(DoNotThrowIfNotFound, ResolvedClosureVar, InitializationMode::NotInitialization, m_bytecodeGenerator.ecmaMode()), // info
SymbolTableOrScopeDepth::symbolTable(VirtualRegister { m_generatorFrameSymbolTableIndex }), // symbol table constant index
storage.scopeOffset.offset() // scope offset
);
});
// Insert op_ret just after save sequence.
fragment.appendInstruction<OpRet>(data.argument);
});
// Emit resume sequence.
rewriter.replaceBytecodeWithFragment(instruction, [&] (BytecodeRewriter::Fragment& fragment) {
data.liveness.forEachSetBit([&](size_t index) {
VirtualRegister operand = virtualRegisterForLocal(index);
Storage storage = storageForGeneratorLocal(vm, index);
fragment.appendInstruction<OpGetFromScope>(
operand, // dst
scope, // scope
storage.identifierIndex, // identifier
GetPutInfo(DoNotThrowIfNotFound, ResolvedClosureVar, InitializationMode::NotInitialization, m_bytecodeGenerator.ecmaMode()), // info
0, // local scope depth
storage.scopeOffset.offset(), // scope offset
m_bytecodeGenerator.nextValueProfileIndex()
);
});
});
}
if (m_generatorFrameData) {
auto instruction = m_instructions.at(m_generatorFrameData->m_point);
rewriter.replaceBytecodeWithFragment(instruction, [&] (BytecodeRewriter::Fragment& fragment) {
if (!m_generatorFrameSymbolTable->scopeSize()) {
// This will cause us to put jsUndefined() into the generator frame's scope value.
fragment.appendInstruction<OpMov>(m_generatorFrameData->m_dst, m_generatorFrameData->m_initialValue);
} else
fragment.appendInstruction<OpCreateLexicalEnvironment>(m_generatorFrameData->m_dst, m_generatorFrameData->m_scope, m_generatorFrameData->m_symbolTable, m_generatorFrameData->m_initialValue);
});
}
rewriter.execute();
}
void performGeneratorification(BytecodeGenerator& bytecodeGenerator, UnlinkedCodeBlockGenerator* codeBlock, JSInstructionStreamWriter& instructions, SymbolTable* generatorFrameSymbolTable, int generatorFrameSymbolTableIndex)
{
if (UNLIKELY(Options::dumpBytecodesBeforeGeneratorification())) {
dataLogLn("Bytecodes before generatorification");
CodeBlockBytecodeDumper<UnlinkedCodeBlockGenerator>::dumpBlock(codeBlock, instructions, WTF::dataFile());
}
BytecodeGeneratorification pass(bytecodeGenerator, codeBlock, instructions, generatorFrameSymbolTable, generatorFrameSymbolTableIndex);
pass.run();
if (UNLIKELY(Options::dumpBytecodesBeforeGeneratorification())) {
dataLogLn("Bytecodes after generatorification");
CodeBlockBytecodeDumper<UnlinkedCodeBlockGenerator>::dumpBlock(codeBlock, instructions, WTF::dataFile());
}
}
} // namespace JSC
|