File: BytecodeLivenessAnalysis.cpp

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (208 lines) | stat: -rw-r--r-- 8,266 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
/*
 * Copyright (C) 2013-2023 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */

#include "config.h"
#include "BytecodeLivenessAnalysis.h"

#include "BytecodeLivenessAnalysisInlines.h"
#include "BytecodeUseDef.h"
#include "CodeBlock.h"
#include "FullBytecodeLiveness.h"
#include "JSCJSValueInlines.h"
#include <wtf/TZoneMallocInlines.h>

namespace JSC {

WTF_MAKE_TZONE_ALLOCATED_IMPL(BytecodeLivenessAnalysis);
WTF_MAKE_TZONE_ALLOCATED_IMPL(FullBytecodeLiveness);

BytecodeLivenessAnalysis::BytecodeLivenessAnalysis(CodeBlock* codeBlock)
    : m_graph(codeBlock, codeBlock->instructions())
{
    runLivenessFixpoint(codeBlock, codeBlock->instructions(), m_graph);

    if (UNLIKELY(Options::dumpBytecodeLivenessResults()))
        dumpResults(codeBlock);
}

std::unique_ptr<FullBytecodeLiveness> BytecodeLivenessAnalysis::computeFullLiveness(CodeBlock* codeBlock)
{
    FastBitVector out;

    size_t size = codeBlock->instructions().size();
    auto result = makeUnique<FullBytecodeLiveness>(size);

    for (auto& block : m_graph.basicBlocksInReverseOrder()) {
        if (block.isEntryBlock() || block.isExitBlock())
            continue;

        out = block.out();

        auto use = [&] (unsigned bitIndex) {
            // This is the use functor, so we set the bit.
            out[bitIndex] = true;
        };

        auto def = [&] (unsigned bitIndex) {
            // This is the def functor, so we clear the bit.
            out[bitIndex] = false;
        };

        auto& instructions = codeBlock->instructions();
        unsigned cursor = block.totalLength();
        for (unsigned i = block.delta().size(); i--;) {
            cursor -= block.delta()[i];
            BytecodeIndex bytecodeIndex = BytecodeIndex(block.leaderOffset() + cursor);
            auto instruction = instructions.at(bytecodeIndex);
            for (Checkpoint checkpoint = instruction->numberOfCheckpoints(); checkpoint--;) {
                ASSERT(checkpoint < instruction->size());
                bytecodeIndex = bytecodeIndex.withCheckpoint(checkpoint);

                stepOverBytecodeIndexDef(codeBlock, instructions, m_graph, bytecodeIndex, def);
                stepOverBytecodeIndexUseInExceptionHandler(codeBlock, instructions, m_graph, bytecodeIndex, use);
                result->m_usesAfter[result->toIndex(bytecodeIndex)] = out; // AfterUse point.
                stepOverBytecodeIndexUse(codeBlock, instructions, m_graph, bytecodeIndex, use);
                result->m_usesBefore[result->toIndex(bytecodeIndex)] = out; // BeforeUse point.
            }
        }
    }

    return result;
}

void BytecodeLivenessAnalysis::dumpResults(CodeBlock* codeBlock)
{
    dataLog("\nDumping bytecode liveness for ", *codeBlock, ":\n");
    const auto& instructions = codeBlock->instructions();
    unsigned i = 0;

    unsigned numberOfBlocks = m_graph.size();
    Vector<FastBitVector> predecessors(numberOfBlocks);
    for (auto& block : m_graph)
        predecessors[block.index()].resize(numberOfBlocks);
    for (auto& block : m_graph) {
        for (unsigned successorIndex : block.successors()) {
            unsigned blockIndex = block.index();
            predecessors[successorIndex][blockIndex] = true;
        }
    }

    auto dumpBitVector = [] (FastBitVector& bits) {
        for (unsigned j = 0; j < bits.numBits(); j++) {
            if (bits[j])
                dataLogF(" %u", j);
        }
    };

    for (auto& block : m_graph) {
        dataLogF("\nBytecode basic block %u: %p (offset: %u, length: %u)\n", i++, &block, block.leaderOffset(), block.totalLength());

        dataLogF("Predecessors:");
        dumpBitVector(predecessors[block.index()]);
        dataLogF("\n");

        dataLogF("Successors:");
        FastBitVector successors;
        successors.resize(numberOfBlocks);
        for (unsigned successorIndex : block.successors())
            successors[successorIndex] = true;
        dumpBitVector(successors); // Dump in sorted order.
        dataLogF("\n");

        if (block.isEntryBlock()) {
            dataLogF("Entry block %p\n", &block);
            continue;
        }
        if (block.isExitBlock()) {
            dataLogF("Exit block: %p\n", &block);
            continue;
        }
        for (unsigned bytecodeOffset = block.leaderOffset(); bytecodeOffset < block.leaderOffset() + block.totalLength();) {
            const auto currentInstruction = instructions.at(bytecodeOffset);

            dataLogF("Live variables:");
            FastBitVector liveBefore = getLivenessInfoAtInstruction(codeBlock, BytecodeIndex(bytecodeOffset));
            dumpBitVector(liveBefore);
            dataLogF("\n");
            codeBlock->dumpBytecode(WTF::dataFile(), currentInstruction);

            bytecodeOffset += currentInstruction->size();
        }

        dataLogF("Live variables:");
        FastBitVector liveAfter = block.out();
        dumpBitVector(liveAfter);
        dataLogF("\n");
    }
}

template<typename EnumType1, typename EnumType2>
constexpr bool enumValuesEqualAsIntegral(EnumType1 v1, EnumType2 v2)
{
    using IntType1 = typename std::underlying_type<EnumType1>::type;
    using IntType2 = typename std::underlying_type<EnumType2>::type;
    if constexpr (sizeof(IntType1) > sizeof(IntType2))
        return static_cast<IntType1>(v1) == static_cast<IntType1>(v2);
    else
        return static_cast<IntType2>(v1) == static_cast<IntType2>(v2);
}

WTF::BitSet<maxNumCheckpointTmps> tmpLivenessForCheckpoint(const CodeBlock& codeBlock, BytecodeIndex bytecodeIndex)
{
    WTF::BitSet<maxNumCheckpointTmps> result;
    Checkpoint checkpoint = bytecodeIndex.checkpoint();

    if (!checkpoint)
        return result;

    switch (codeBlock.instructions().at(bytecodeIndex)->opcodeID()) {
    case op_call_varargs:
    case op_tail_call_varargs:
    case op_construct_varargs:
    case op_super_construct_varargs: {
        static_assert(enumValuesEqualAsIntegral(OpCallVarargs::makeCall, OpTailCallVarargs::makeCall) && enumValuesEqualAsIntegral(OpCallVarargs::argCountIncludingThis, OpTailCallVarargs::argCountIncludingThis));
        static_assert(enumValuesEqualAsIntegral(OpCallVarargs::makeCall, OpConstructVarargs::makeCall) && enumValuesEqualAsIntegral(OpCallVarargs::argCountIncludingThis, OpConstructVarargs::argCountIncludingThis));
        static_assert(enumValuesEqualAsIntegral(OpCallVarargs::makeCall, OpSuperConstructVarargs::makeCall) && enumValuesEqualAsIntegral(OpCallVarargs::argCountIncludingThis, OpSuperConstructVarargs::argCountIncludingThis));
        if (checkpoint == OpCallVarargs::makeCall)
            result.set(OpCallVarargs::argCountIncludingThis);
        return result;
    }
    case op_iterator_open: {
        return result;
    }
    case op_iterator_next: {
        result.set(OpIteratorNext::nextResult);
        return result;
    }
    case op_instanceof: {
        return result;
    }
    default:
        break;
    }
    RELEASE_ASSERT_NOT_REACHED();
}

} // namespace JSC