1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
|
/*
* Copyright (C) 2013-2024 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#if ENABLE(DFG_JIT)
#include "DFGAbstractValue.h"
#include "DFGGraph.h"
#include "DFGNode.h"
#include "DFGNodeFlowProjection.h"
#include "DFGPhiChildren.h"
#include <wtf/TZoneMalloc.h>
#include <wtf/TriState.h>
namespace JSC { namespace DFG {
template<typename AbstractStateType>
class AbstractInterpreter {
WTF_MAKE_TZONE_ALLOCATED_TEMPLATE(AbstractInterpreter);
public:
AbstractInterpreter(Graph&, AbstractStateType&);
~AbstractInterpreter();
ALWAYS_INLINE AbstractValue& forNode(NodeFlowProjection node)
{
return m_state.forNode(node);
}
ALWAYS_INLINE AbstractValue& forTupleNode(NodeFlowProjection node, unsigned index)
{
return m_state.forTupleNode(node, index);
}
ALWAYS_INLINE AbstractValue& forNode(Edge edge)
{
return forNode(edge.node());
}
ALWAYS_INLINE void clearForNode(NodeFlowProjection node)
{
m_state.clearForNode(node);
}
ALWAYS_INLINE void clearForNode(Edge edge)
{
clearForNode(edge.node());
}
template<typename... Arguments>
ALWAYS_INLINE void setForNode(NodeFlowProjection node, Arguments&&... arguments)
{
m_state.setForNode(node, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setForNode(Edge edge, Arguments&&... arguments)
{
setForNode(edge.node(), std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setTypeForNode(NodeFlowProjection node, Arguments&&... arguments)
{
m_state.setTypeForNode(node, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setTypeForNode(Edge edge, Arguments&&... arguments)
{
setTypeForNode(edge.node(), std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setNonCellTypeForNode(NodeFlowProjection node, Arguments&&... arguments)
{
m_state.setNonCellTypeForNode(node, std::forward<Arguments>(arguments)...);
}
template<typename... Arguments>
ALWAYS_INLINE void setNonCellTypeForNode(Edge edge, Arguments&&... arguments)
{
setNonCellTypeForNode(edge.node(), std::forward<Arguments>(arguments)...);
}
ALWAYS_INLINE void makeBytecodeTopForNode(NodeFlowProjection node)
{
m_state.makeBytecodeTopForNode(node);
}
ALWAYS_INLINE void makeBytecodeTopForNode(Edge edge)
{
makeBytecodeTopForNode(edge.node());
}
ALWAYS_INLINE void makeHeapTopForNode(NodeFlowProjection node)
{
m_state.makeHeapTopForNode(node);
}
ALWAYS_INLINE void makeHeapTopForNode(Edge edge)
{
makeHeapTopForNode(edge.node());
}
bool hasClearedAbstractState(NodeFlowProjection node)
{
return m_state.hasClearedAbstractState(node);
}
bool needsTypeCheck(Node* node, SpeculatedType typesPassedThrough)
{
return !forNode(node).isType(typesPassedThrough);
}
bool needsTypeCheck(Edge edge, SpeculatedType typesPassedThrough)
{
return needsTypeCheck(edge.node(), typesPassedThrough);
}
bool needsTypeCheck(Edge edge)
{
return needsTypeCheck(edge, typeFilterFor(edge.useKind()));
}
// Abstractly executes the given node. The new abstract state is stored into an
// abstract stack stored in *this. Loads of local variables (that span
// basic blocks) interrogate the basic block's notion of the state at the head.
// Stores to local variables are handled in endBasicBlock(). This returns true
// if execution should continue past this node. Notably, it will return true
// for block terminals, so long as those terminals are not Return or Unreachable.
//
// This is guaranteed to be equivalent to doing:
//
// state.startExecuting()
// state.executeEdges(node);
// result = state.executeEffects(index);
bool execute(unsigned indexInBlock);
bool execute(Node*);
// Indicate the start of execution of a node. It resets any state in the node
// that is progressively built up by executeEdges() and executeEffects().
void startExecuting();
// Abstractly execute the edges of the given node. This runs filterEdgeByUse()
// on all edges of the node. You can skip this step, if you have already used
// filterEdgeByUse() (or some equivalent) on each edge.
void executeEdges(Node*);
void executeKnownEdgeTypes(Node*);
ALWAYS_INLINE void filterEdgeByUse(Edge& edge)
{
UseKind useKind = edge.useKind();
if (useKind == UntypedUse)
return;
filterByType(edge, typeFilterFor(useKind));
}
// Abstractly execute the effects of the given node. This changes the abstract
// state assuming that edges have already been filtered.
bool executeEffects(unsigned indexInBlock);
bool executeEffects(unsigned clobberLimit, Node*);
void dump(PrintStream& out) const;
void dump(PrintStream& out);
template<typename T>
FiltrationResult filter(T node, const RegisteredStructureSet& set, SpeculatedType admittedTypes = SpecNone)
{
return filter(forNode(node), set, admittedTypes);
}
template<typename T>
FiltrationResult filterArrayModes(T node, ArrayModes arrayModes, SpeculatedType admittedTypes = SpecNone)
{
return filterArrayModes(forNode(node), arrayModes, admittedTypes);
}
template<typename T>
FiltrationResult filter(T node, SpeculatedType type)
{
return filter(forNode(node), type);
}
template<typename T>
FiltrationResult filterByValue(T node, FrozenValue value)
{
return filterByValue(forNode(node), value);
}
template<typename T>
FiltrationResult filterClassInfo(T node, const ClassInfo* classInfo)
{
return filterClassInfo(forNode(node), classInfo);
}
FiltrationResult filter(AbstractValue&, const RegisteredStructureSet&, SpeculatedType admittedTypes = SpecNone);
FiltrationResult filterArrayModes(AbstractValue&, ArrayModes, SpeculatedType admittedTypes = SpecNone);
FiltrationResult filter(AbstractValue&, SpeculatedType);
FiltrationResult filterByValue(AbstractValue&, FrozenValue);
FiltrationResult filterClassInfo(AbstractValue&, const ClassInfo*);
PhiChildren* phiChildren() { return m_phiChildren.get(); }
void filterICStatus(Node*);
void clobberWorld();
void didFoldClobberWorld();
private:
bool handleConstantBinaryBitwiseOp(Node*);
template<typename Functor>
void forAllValues(unsigned indexInBlock, Functor&);
void clobberStructures();
void didFoldClobberStructures();
void observeTransition(unsigned indexInBlock, RegisteredStructure from, RegisteredStructure to);
public:
void observeTransitions(unsigned indexInBlock, const TransitionVector&);
private:
TriState booleanResult(Node*, AbstractValue&);
void setBuiltInConstant(Node* node, FrozenValue value)
{
AbstractValue& abstractValue = forNode(node);
abstractValue.set(m_graph, value, m_state.structureClobberState());
abstractValue.fixTypeForRepresentation(m_graph, node);
}
void setConstant(Node* node, FrozenValue value)
{
setBuiltInConstant(node, value);
m_state.setShouldTryConstantFolding(true);
}
void setTupleConstant(Node* node, unsigned index, FrozenValue value)
{
AbstractValue& abstractValue = m_state.forTupleNode(node, index);
abstractValue.set(m_graph, value, m_state.structureClobberState());
abstractValue.fixTypeForRepresentation(m_graph, node);
m_state.setShouldTryConstantFolding(true);
}
ALWAYS_INLINE void filterByType(Edge& edge, SpeculatedType type);
void verifyEdge(Node*, Edge);
void verifyEdges(Node*);
void executeDoubleUnaryOpEffects(Node*, const auto& functor);
bool handleConstantDivOp(Node*);
CodeBlock* const m_codeBlock;
Graph& m_graph;
VM& m_vm;
AbstractStateType& m_state;
std::unique_ptr<PhiChildren> m_phiChildren;
};
WTF_MAKE_TZONE_ALLOCATED_TEMPLATE_IMPL(template<typename AbstractStateType>, AbstractInterpreter<AbstractStateType>);
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|