1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
|
/*
* Copyright (C) 2011-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include "JITCompilationMode.h"
#if ENABLE(DFG_JIT)
#include "Options.h"
#include <limits.h>
#include <wtf/text/StringImpl.h>
namespace JSC { namespace DFG {
struct Node;
typedef uint32_t BlockIndex;
static constexpr BlockIndex NoBlock = UINT_MAX;
extern const char* const tierName;
// Use RefChildren if the child ref counts haven't already been adjusted using
// other means and either of the following is true:
// - The node you're creating is MustGenerate.
// - The place where you're inserting a reference to the node you're creating
// will not also do RefChildren.
enum RefChildrenMode {
RefChildren,
DontRefChildren
};
// Use RefNode if you know that the node will be used from another node, and you
// will not already be ref'ing the node to account for that use.
enum RefNodeMode {
RefNode,
DontRefNode
};
enum SwitchKind {
SwitchImm,
SwitchChar,
SwitchString,
SwitchCell
};
inline bool verboseCompilationEnabled(JITCompilationMode mode = JITCompilationMode::DFG)
{
return Options::verboseCompilation() || Options::dumpGraphAtEachPhase() || (isFTL(mode) && Options::verboseFTLCompilation());
}
inline bool logCompilationChanges(JITCompilationMode mode = JITCompilationMode::DFG)
{
return verboseCompilationEnabled(mode) || Options::logCompilationChanges();
}
inline bool shouldDumpGraphAtEachPhase(JITCompilationMode mode = JITCompilationMode::DFG)
{
if (isFTL(mode))
return Options::dumpGraphAtEachPhase() || Options::dumpDFGFTLGraphAtEachPhase();
return Options::dumpGraphAtEachPhase() || Options::dumpDFGGraphAtEachPhase();
}
inline bool validationEnabled()
{
#if ASSERT_ENABLED
return true;
#else
return Options::validateGraph() || Options::validateGraphAtEachPhase();
#endif
}
inline bool constexpr enableInt52()
{
#if USE(JSVALUE64)
return true;
#else
return false;
#endif
}
// The prediction propagator effectively does four passes, with the last pass
// being done by the separate FixuPhase.
enum PredictionPass {
// We're converging in a straight-forward forward flow fixpoint. This is the
// most conventional part of the propagator - it makes only monotonic decisions
// based on value profiles and rare case profiles. It ignores baseline JIT rare
// case profiles. The goal here is to develop a good guess of which variables
// are likely to be purely numerical, which generally doesn't require knowing
// the rare case profiles.
PrimaryPass,
// At this point we know what is numerical and what isn't. Non-numerical inputs
// to arithmetic operations will not have useful information in the Baseline JIT
// rare case profiles because Baseline may take slow path on non-numerical
// inputs even if the DFG could handle the input on the fast path. Boolean
// inputs are the most obvious example. This pass of prediction propagation will
// use Baseline rare case profiles for purely numerical operations and it will
// ignore them for everything else. The point of this pass is to develop a good
// guess of which variables are likely to be doubles.
//
// This pass is intentionally weird and goes against what is considered good
// form when writing a static analysis: a new data flow of booleans will cause
// us to ignore rare case profiles except that by then, we will have already
// propagated double types based on our prior assumption that we shouldn't
// ignore rare cases. This probably won't happen because the PrimaryPass is
// almost certainly going to establish what is and isn't numerical. But it's
// conceivable that during this pass we will discover a new boolean data flow.
// This ends up being sound because the prediction propagator could literally
// make any guesses it wants and still be sound (worst case, we OSR exit more
// often or use too general of types are run a bit slower). This will converge
// because we force monotonicity on the types of nodes and variables. So, the
// worst thing that can happen is that we violate basic laws of theoretical
// decency.
RareCasePass,
// At this point we know what is numerical and what isn't, and we also know what
// is a double and what isn't. So, we start forcing variables to be double.
// Doing so may have a cascading effect so this is a fixpoint. It's monotonic
// in the sense that once a variable is forced double, it cannot be forced in
// the other direction.
DoubleVotingPass,
// This pass occurs once we have converged. At this point we are just installing
// type checks based on the conclusions we have already reached. It's important
// for this pass to reach the same conclusions that DoubleVotingPass reached.
FixupPass
};
enum StructureRegistrationState { HaveNotStartedRegistering, AllStructuresAreRegistered };
enum StructureRegistrationResult { StructureRegisteredNormally, StructureRegisteredAndWatched };
enum OptimizationFixpointState { BeforeFixpoint, FixpointNotConverged, FixpointConverged };
// Describes the form you can expect the entire graph to be in.
enum GraphForm {
// LoadStore form means that basic blocks may freely use GetLocal, SetLocal,
// and Flush for accessing local variables and indicating where their live
// ranges ought to be. Data flow between local accesses is implicit. Liveness
// is only explicit at block heads (variablesAtHead). This is only used by
// the DFG simplifier and is only preserved by same.
//
// For example, LoadStore form gives no easy way to determine which SetLocal's
// flow into a GetLocal. As well, LoadStore form implies no restrictions on
// redundancy: you can freely emit multiple GetLocals, or multiple SetLocals
// (or any combination thereof) to the same local in the same block. LoadStore
// form does not require basic blocks to declare how they affect or use locals,
// other than implicitly by using the local ops and by preserving
// variablesAtHead. Finally, LoadStore allows flexibility in how liveness of
// locals is extended; for example you can replace a GetLocal with a Phantom
// and so long as the Phantom retains the GetLocal's children (i.e. the Phi
// most likely) then it implies that the local is still live but that it need
// not be stored to the stack necessarily. This implies that Phantom can
// reference nodes that have no result, as long as those nodes are valid
// GetLocal children (i.e. Phi, SetLocal, SetArgumentDefinitely, SetArgumentMaybe).
//
// LoadStore form also implies that Phis need not have children. By default,
// they end up having no children if you enter LoadStore using the canonical
// way (call Graph::dethread).
//
// LoadStore form is suitable for CFG transformations, as well as strength
// reduction, folding, and CSE.
LoadStore,
// ThreadedCPS form means that basic blocks list up-front which locals they
// expect to be live at the head, and which locals they make available at the
// tail. ThreadedCPS form also implies that:
//
// - GetLocals and SetLocals are not redundant within a basic block.
//
// - All GetLocals and Flushes are linked directly to the last access point
// of the variable, which must not be another GetLocal.
//
// - Phantom(Phi) is not legal, but PhantomLocal is.
//
// ThreadedCPS form is suitable for data flow analysis (CFA, prediction
// propagation), register allocation, and code generation.
ThreadedCPS,
// SSA form. See DFGSSAConversionPhase.h for a description.
SSA
};
// Describes the state of the UnionFind structure of VariableAccessData's.
enum UnificationState {
// BasicBlock-local accesses to variables are appropriately unified with each other.
LocallyUnified,
// Unification has been performed globally.
GloballyUnified
};
// Describes how reference counts in the graph behave.
enum RefCountState {
// Everything has refCount() == 1.
EverythingIsLive,
// Set after DCE has run.
ExactRefCount
};
enum OperandSpeculationMode { AutomaticOperandSpeculation, ManualOperandSpeculation };
enum ProofStatus { NeedsCheck, IsProved };
inline bool isProved(ProofStatus proofStatus)
{
ASSERT(proofStatus == IsProved || proofStatus == NeedsCheck);
return proofStatus == IsProved;
}
inline ProofStatus proofStatusForIsProved(bool isProved)
{
return isProved ? IsProved : NeedsCheck;
}
enum KillStatus { DoesNotKill, DoesKill };
inline bool doesKill(KillStatus killStatus)
{
ASSERT(killStatus == DoesNotKill || killStatus == DoesKill);
return killStatus == DoesKill;
}
inline KillStatus killStatusForDoesKill(bool doesKill)
{
return doesKill ? DoesKill : DoesNotKill;
}
enum class PlanStage {
Initial,
AfterFixup,
LICMAndLater
};
// If possible, this will acquire a lock to make sure that if multiple threads
// start crashing at the same time, you get coherent dump output. Use this only
// when you're forcing a crash with diagnostics.
void startCrashing();
JS_EXPORT_PRIVATE bool isCrashing();
struct NodeAndIndex {
NodeAndIndex()
: node(nullptr)
, index(UINT_MAX)
{
}
NodeAndIndex(Node* node, unsigned index)
: node(node)
, index(index)
{
ASSERT(!node == (index == UINT_MAX));
}
bool operator!() const
{
return !node;
}
Node* node;
unsigned index;
};
// A less-than operator for strings that is useful for generating string switches. Sorts by <
// relation on characters. Ensures that if a is a prefix of b, then a < b.
bool stringLessThan(StringImpl& a, StringImpl& b);
} } // namespace JSC::DFG
namespace WTF {
void printInternal(PrintStream&, JSC::DFG::OptimizationFixpointState);
void printInternal(PrintStream&, JSC::DFG::GraphForm);
void printInternal(PrintStream&, JSC::DFG::UnificationState);
void printInternal(PrintStream&, JSC::DFG::RefCountState);
void printInternal(PrintStream&, JSC::DFG::ProofStatus);
} // namespace WTF
#endif // ENABLE(DFG_JIT)
namespace JSC { namespace DFG {
// Put things here that must be defined even if ENABLE(DFG_JIT) is false.
enum CapabilityLevel {
CannotCompile,
CanCompile,
CanCompileAndInline,
CapabilityLevelNotSet
};
inline bool canCompile(CapabilityLevel level)
{
switch (level) {
case CanCompile:
case CanCompileAndInline:
return true;
default:
return false;
}
}
inline bool canInline(CapabilityLevel level)
{
switch (level) {
case CanCompileAndInline:
return true;
default:
return false;
}
}
inline CapabilityLevel leastUpperBound(CapabilityLevel a, CapabilityLevel b)
{
switch (a) {
case CannotCompile:
return CannotCompile;
case CanCompile:
switch (b) {
case CanCompile:
case CanCompileAndInline:
return CanCompile;
default:
return CannotCompile;
}
case CanCompileAndInline:
return b;
case CapabilityLevelNotSet:
ASSERT_NOT_REACHED();
return CannotCompile;
}
ASSERT_NOT_REACHED();
return CannotCompile;
}
// Unconditionally disable DFG disassembly support if the DFG is not compiled in.
inline bool shouldDumpDisassembly(JITCompilationMode mode = JITCompilationMode::DFG)
{
#if ENABLE(DFG_JIT)
return Options::dumpDisassembly() || Options::dumpDFGDisassembly() || (isFTL(mode) && Options::dumpFTLDisassembly());
#else
UNUSED_PARAM(mode);
return false;
#endif
}
} } // namespace JSC::DFG
namespace WTF {
void printInternal(PrintStream&, JSC::DFG::CapabilityLevel);
} // namespace WTF
|