1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
|
/*
* Copyright (C) 2014-2020 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGIntegerCheckCombiningPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGPhase.h"
#include "JSCJSValueInlines.h"
namespace JSC { namespace DFG {
namespace DFGIntegerCheckCombiningPhaseInternal {
static constexpr bool verbose = false;
}
class IntegerCheckCombiningPhase : public Phase {
public:
enum RangeKind {
InvalidRangeKind,
// This means we did ArithAdd with CheckOverflow.
Addition,
// This means we did CheckInBounds on some length.
ArrayBounds
};
struct RangeKey {
struct Hash {
static unsigned hash(const RangeKey& key) { return key.hash(); }
static bool equal(const RangeKey& a, const RangeKey& b) { return a == b; }
static constexpr bool safeToCompareToEmptyOrDeleted = false;
};
static RangeKey addition(Edge edge)
{
RangeKey result;
result.m_kind = Addition;
result.m_source = edge.sanitized();
result.m_key = nullptr;
return result;
}
static RangeKey arrayBounds(Edge edge, Node* key)
{
RangeKey result;
result.m_kind = ArrayBounds;
result.m_source = edge.sanitized();
result.m_key = key;
return result;
}
bool operator!() const { return m_kind == InvalidRangeKind; }
unsigned hash() const
{
return m_kind + m_source.hash() + PtrHash<Node*>::hash(m_key);
}
friend bool operator==(const RangeKey&, const RangeKey&) = default;
void dump(PrintStream& out) const
{
switch (m_kind) {
case InvalidRangeKind:
out.print("InvalidRangeKind(");
break;
case Addition:
out.print("Addition(");
break;
case ArrayBounds:
out.print("ArrayBounds(");
break;
}
if (m_source)
out.print(m_source);
else
out.print("null");
out.print(", ");
if (m_key)
out.print(m_key);
else
out.print("null");
out.print(")");
}
RangeKind m_kind { InvalidRangeKind };
Edge m_source;
Node* m_key { nullptr };
};
struct RangeKeyAndAddend {
RangeKeyAndAddend() = default;
RangeKeyAndAddend(RangeKey key, int32_t addend)
: m_key(key)
, m_addend(addend)
{
}
bool operator!() const { return !m_key && !m_addend; }
void dump(PrintStream& out) const
{
out.print(m_key, " + ", m_addend);
}
RangeKey m_key;
int32_t m_addend { 0 };
};
struct Range {
void dump(PrintStream& out) const
{
out.print("(", m_minBound, " @", m_minOrigin, ") .. (", m_maxBound, " @", m_maxOrigin, "), count = ", m_count, ", hoisted = ", m_hoisted);
}
int32_t m_minBound { 0 };
int32_t m_maxBound { 0 };
CodeOrigin m_minOrigin;
CodeOrigin m_maxOrigin;
unsigned m_count { 0 }; // If this is zero then the bounds won't necessarily make sense.
bool m_hoisted { false };
Node* m_dependency { nullptr };
};
IntegerCheckCombiningPhase(Graph& graph)
: Phase(graph, "integer check combining"_s)
, m_insertionSet(graph)
{
}
bool run()
{
ASSERT(m_graph.m_form == SSA);
m_changed = false;
for (BlockIndex blockIndex = m_graph.numBlocks(); blockIndex--;)
handleBlock(blockIndex);
return m_changed;
}
private:
void handleBlock(BlockIndex blockIndex)
{
BasicBlock* block = m_graph.block(blockIndex);
if (!block)
return;
m_map.clear();
// First we collect Ranges. If operations within the range have enough redundancy,
// we hoist. And then we remove additions and checks that fall within the max range.
for (auto* node : *block) {
RangeKeyAndAddend data = rangeKeyAndAddend(node);
dataLogLnIf(DFGIntegerCheckCombiningPhaseInternal::verbose, "For ", node, ": ", data);
if (!data)
continue;
Range& range = m_map.add(data.m_key, Range { }).iterator->value;
dataLogLnIf(DFGIntegerCheckCombiningPhaseInternal::verbose, " Range: ", range);
if (range.m_count) {
if (data.m_addend > range.m_maxBound) {
range.m_maxBound = data.m_addend;
range.m_maxOrigin = node->origin.semantic;
} else if (data.m_addend < range.m_minBound) {
range.m_minBound = data.m_addend;
range.m_minOrigin = node->origin.semantic;
}
} else {
range.m_maxBound = data.m_addend;
range.m_minBound = data.m_addend;
range.m_minOrigin = node->origin.semantic;
range.m_maxOrigin = node->origin.semantic;
}
range.m_count++;
dataLogLnIf(DFGIntegerCheckCombiningPhaseInternal::verbose, " New range: ", range);
}
for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
Node* node = block->at(nodeIndex);
RangeKeyAndAddend data = rangeKeyAndAddend(node);
if (!data)
continue;
Range range = m_map.get(data.m_key);
if (!isValid(data.m_key, range))
continue;
// Do the hoisting.
if (!range.m_hoisted) {
NodeOrigin minOrigin = node->origin.withSemantic(range.m_minOrigin);
NodeOrigin maxOrigin = node->origin.withSemantic(range.m_maxOrigin);
switch (data.m_key.m_kind) {
case Addition: {
if (range.m_minBound < 0)
insertAdd(nodeIndex, minOrigin, data.m_key.m_source, range.m_minBound);
if (range.m_maxBound > 0)
insertAdd(nodeIndex, maxOrigin, data.m_key.m_source, range.m_maxBound);
break;
}
case ArrayBounds: {
Node* minNode;
Node* maxNode;
if (!data.m_key.m_source) {
// data.m_key.m_source being null means that we're comparing against int32 constants (see rangeKeyAndAddend()).
// Since CheckInBounds does an unsigned comparison, if the minBound >= 0, it is also covered by the
// maxBound comparison. However, if minBound < 0, then CheckInBounds should always fail its speculation check.
// We'll force an OSR exit in that case.
minNode = nullptr;
if (range.m_minBound < 0)
m_insertionSet.insertNode(nodeIndex, SpecNone, ForceOSRExit, node->origin);
maxNode = m_insertionSet.insertConstant(
nodeIndex, maxOrigin, jsNumber(range.m_maxBound));
} else {
minNode = insertAdd(
nodeIndex, minOrigin, data.m_key.m_source, range.m_minBound,
Arith::Unchecked);
maxNode = insertAdd(
nodeIndex, maxOrigin, data.m_key.m_source, range.m_maxBound,
Arith::Unchecked);
}
Node* minCheck = nullptr;
if (minNode) {
minCheck = m_insertionSet.insertNode(
nodeIndex, SpecNone, CheckInBounds, node->origin,
Edge(minNode, Int32Use), Edge(data.m_key.m_key, Int32Use));
}
m_map.find(data.m_key)->value.m_dependency = m_insertionSet.insertNode(
nodeIndex, SpecNone, CheckInBounds, node->origin,
Edge(maxNode, Int32Use), Edge(data.m_key.m_key, Int32Use), Edge(minCheck, UntypedUse));
break;
}
default:
RELEASE_ASSERT_NOT_REACHED();
}
m_changed = true;
m_map.find(data.m_key)->value.m_hoisted = true;
}
// Do the elimination.
switch (data.m_key.m_kind) {
case Addition:
node->setArithMode(Arith::Unchecked);
m_changed = true;
break;
case ArrayBounds:
ASSERT(node->op() == CheckInBounds);
if (UNLIKELY(Options::validateBoundsCheckElimination()))
m_insertionSet.insertNode(nodeIndex, SpecNone, AssertInBounds, node->origin, node->child1(), node->child2());
node->convertToIdentityOn(m_map.get(data.m_key).m_dependency);
m_changed = true;
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
m_insertionSet.execute(block);
}
RangeKeyAndAddend rangeKeyAndAddend(Node* node)
{
switch (node->op()) {
case ArithAdd: {
if (node->arithMode() != Arith::CheckOverflow
&& node->arithMode() != Arith::CheckOverflowAndNegativeZero)
break;
if (!node->child2()->isInt32Constant())
break;
return RangeKeyAndAddend(
RangeKey::addition(node->child1()),
node->child2()->asInt32());
}
case CheckInBounds: {
Edge source;
int32_t addend;
Node* key = node->child2().node();
Edge index = node->child1();
if (index->isInt32Constant()) {
source = Edge();
addend = index->asInt32();
} else if (
index->op() == ArithAdd
&& index->isBinaryUseKind(Int32Use)
&& index->child2()->isInt32Constant()) {
source = index->child1();
addend = index->child2()->asInt32();
} else {
source = index;
addend = 0;
}
return RangeKeyAndAddend(RangeKey::arrayBounds(source, key), addend);
}
default:
break;
}
return RangeKeyAndAddend();
}
bool isValid(const RangeKey& key, const Range& range)
{
if (range.m_count < 2)
return false;
switch (key.m_kind) {
case ArrayBounds: {
// Have to do this carefully because C++ compilers are too smart. But all we're really doing is detecting if
// the difference between the bounds is 2^31 or more. If it was, then we'd have to worry about wrap-around.
// The way we'd like to write this expression is (range.m_maxBound - range.m_minBound) >= 0, but that is a
// signed subtraction and compare, which allows the C++ compiler to do anything it wants in case of
// wrap-around.
uint32_t maxBound = range.m_maxBound;
uint32_t minBound = range.m_minBound;
uint32_t unsignedDifference = maxBound - minBound;
return !(unsignedDifference >> 31);
}
default:
return true;
}
}
Node* insertAdd(
unsigned nodeIndex, NodeOrigin origin, Edge source, int32_t addend,
Arith::Mode arithMode = Arith::CheckOverflow)
{
if (!addend)
return source.node();
return m_insertionSet.insertNode(
nodeIndex, source->prediction(), source->result(),
ArithAdd, origin, OpInfo(arithMode), source,
m_insertionSet.insertConstantForUse(
nodeIndex, origin, jsNumber(addend), source.useKind()));
}
using RangeMap = UncheckedKeyHashMap<GenericHashKey<RangeKey, RangeKey::Hash>, Range>;
RangeMap m_map;
InsertionSet m_insertionSet;
bool m_changed;
};
bool performIntegerCheckCombining(Graph& graph)
{
return runPhase<IntegerCheckCombiningPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|