1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923
|
/*
* Copyright (C) 2015-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGIntegerRangeOptimizationPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGBlockMapInlines.h"
#include "DFGBlockSet.h"
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGNodeFlowProjection.h"
#include "DFGPhase.h"
#include "JSCJSValueInlines.h"
namespace JSC { namespace DFG {
namespace {
namespace DFGIntegerRangeOptimizationPhaseInternal {
static constexpr bool verbose = false;
}
const unsigned giveUpThreshold = 50;
int64_t clampedSumImpl() { return 0; }
template<typename... Args>
int64_t clampedSumImpl(int left, Args... args)
{
return static_cast<int64_t>(left) + clampedSumImpl(args...);
}
template<typename... Args>
int clampedSum(Args... args)
{
int64_t result = clampedSumImpl(args...);
return static_cast<int>(std::min(
static_cast<int64_t>(std::numeric_limits<int>::max()),
std::max(
static_cast<int64_t>(std::numeric_limits<int>::min()),
result)));
}
bool isGeneralOffset(int offset)
{
return offset >= -1 && offset <= 1;
}
class Relationship {
public:
enum Kind {
LessThan,
Equal,
NotEqual,
GreaterThan
};
// Some relationships provide more information than others. When a relationship provides more
// information, it is less vague.
static unsigned vagueness(Kind kind)
{
switch (kind) {
case Equal:
return 0;
case LessThan:
case GreaterThan:
return 1;
case NotEqual:
return 2;
}
RELEASE_ASSERT_NOT_REACHED();
return 0;
}
static constexpr unsigned minVagueness = 0;
static constexpr unsigned maxVagueness = 2;
static Kind flipped(Kind kind)
{
switch (kind) {
case LessThan:
return GreaterThan;
case Equal:
return Equal;
case NotEqual:
return NotEqual;
case GreaterThan:
return LessThan;
}
RELEASE_ASSERT_NOT_REACHED();
return kind;
}
Relationship()
: m_left(nullptr)
, m_right(nullptr)
, m_kind(Equal)
, m_offset(0)
{
}
Relationship(NodeFlowProjection left, NodeFlowProjection right, Kind kind, int offset = 0)
: m_left(left)
, m_right(right)
, m_kind(kind)
, m_offset(offset)
{
RELEASE_ASSERT(m_left);
RELEASE_ASSERT(m_right);
RELEASE_ASSERT(m_left != m_right);
}
static Relationship safeCreate(NodeFlowProjection left, NodeFlowProjection right, Kind kind, int offset = 0)
{
if (!left.isStillValid() || !right.isStillValid() || left == right)
return Relationship();
return Relationship(left, right, kind, offset);
}
explicit operator bool() const { return !!m_left; }
NodeFlowProjection left() const { return m_left; }
NodeFlowProjection right() const { return m_right; }
Kind kind() const { return m_kind; }
int offset() const { return m_offset; }
unsigned vagueness() const { return vagueness(kind()); }
Relationship flipped() const
{
if (!*this)
return Relationship();
// This should return Relationship() if -m_offset overflows. For example:
//
// @a > @b - 2**31
//
// If we flip it we get:
//
// @b < @a + 2**31
//
// Except that the sign gets flipped since it's INT_MIN:
//
// @b < @a - 2**31
//
// And that makes no sense. To see how little sense it makes, consider:
//
// @a > @zero - 2**31
//
// We would flip it to mean:
//
// @zero < @a - 2**31
//
// Which is absurd.
if (m_offset == std::numeric_limits<int>::min())
return Relationship();
return Relationship(m_right, m_left, flipped(m_kind), -m_offset);
}
Relationship inverse() const
{
if (!*this)
return *this;
switch (m_kind) {
case Equal:
return Relationship(m_left, m_right, NotEqual, m_offset);
case NotEqual:
return Relationship(m_left, m_right, Equal, m_offset);
case LessThan:
if (sumOverflows<int>(m_offset, -1))
return Relationship();
return Relationship(m_left, m_right, GreaterThan, m_offset - 1);
case GreaterThan:
if (sumOverflows<int>(m_offset, 1))
return Relationship();
return Relationship(m_left, m_right, LessThan, m_offset + 1);
}
RELEASE_ASSERT_NOT_REACHED();
}
bool isCanonical() const { return m_left < m_right; }
Relationship canonical() const
{
if (isCanonical())
return *this;
return flipped();
}
bool sameNodesAs(const Relationship& other) const
{
return m_left == other.m_left
&& m_right == other.m_right;
}
bool isEquivalentTo(const Relationship& other) const
{
if (m_left != other.m_left || m_kind != other.m_kind)
return false;
if (*this == other)
return true;
if (m_right->isInt32Constant() && other.m_right->isInt32Constant()) {
int thisRight = m_right->asInt32();
int otherRight = other.m_right->asInt32();
if (sumOverflows<int>(thisRight, m_offset))
return false;
if (sumOverflows<int>(otherRight, other.m_offset))
return false;
return (thisRight + m_offset) == (otherRight + other.m_offset);
}
return false;
}
bool operator==(const Relationship& other) const
{
return sameNodesAs(other)
&& m_kind == other.m_kind
&& m_offset == other.m_offset;
}
bool operator<(const Relationship& other) const
{
if (m_left != other.m_left)
return m_left < other.m_left;
if (m_right != other.m_right)
return m_right < other.m_right;
if (m_kind != other.m_kind)
return m_kind < other.m_kind;
return m_offset < other.m_offset;
}
// If possible, returns a form of this relationship where the given node is the left
// side. Returns a null relationship if this relationship cannot say anything about this
// node.
Relationship forNode(NodeFlowProjection node) const
{
if (m_left == node)
return *this;
if (m_right == node)
return flipped();
return Relationship();
}
void setLeft(NodeFlowProjection left)
{
RELEASE_ASSERT(left != m_right);
m_left = left;
}
void setRight(NodeFlowProjection right)
{
RELEASE_ASSERT(right != m_left);
m_right = right;
}
bool addToOffset(int offset)
{
if (sumOverflows<int>(m_offset, offset))
return false;
m_offset += offset;
return true;
}
// Attempts to create relationships that summarize the union of this relationship and
// the other relationship. Relationships are returned by calling the functor with the newly
// created relationships. No relationships are created to indicate TOP. This is used
// for merging the current relationship-at-head for some pair of nodes and a new
// relationship-at-head being proposed by a predecessor. We wish to create a new
// relationship that is true whenever either of them are true, which ensuring that we don't
// do this forever. Anytime we create a relationship that is not equal to either of the
// previous ones, we will cause the analysis fixpoint to reexecute.
//
// If *this and other are identical, we just pass it to the functor.
//
// If they are different, we pick from a finite set of "general" relationships:
//
// Eq: this == other + C, where C is -1, 0, or 1.
// Lt: this < other + C, where C is -1, 0, or 1.
// Gt: this > other + C, where C is -1, 0, or 1.
// Ne: this != other + C, where C is -1, 0, or 1.
// TOP: the null relationship.
//
// Constraining C to -1,0,1 is necessary to ensure that the set of general relationships is
// finite. This finite set of relationships forms a pretty simple lattice where a
// relA->relB means "relB is more general than relA". For example, this<other+1 is more
// general than this==other. I'll leave it as an exercise for the reader to see that a
// graph between the 13 general relationships is indeed a lattice. The fact that the set of
// general relationships is a finite lattice ensures monotonicity of the fixpoint, since
// any merge over not-identical relationships returns a relationship that is closer to the
// TOP relationship than either of the original relationships. Here's how convergence is
// achieved for any pair of relationships over the same nodes:
//
// - If they are identical, then returning *this means that we won't be responsible for
// causing another fixpoint iteration. Once all merges reach this point, we're done.
//
// - If they are different, then we pick the most constraining of the 13 general
// relationships that is true if either *this or other are true. This means that if the
// relationships are not identical, the merged relationship will be closer to TOP than
// either of the originals. Returning a different relationship means that we will be
// responsible for the fixpoint to reloop, but we can only do this at most 13 times since
// that's how "deep" the general relationship lattice is.
//
// Note that C being constrained to -1,0,1 also ensures that we never have to return a
// combination of Lt and Gt, as in for example this<other+C && this>other-D. The only possible
// values of C and D where this would work are -1 and 1, but in that case we just say
// this==other. That said, the logic for merging two == relationships, like this==other+C ||
// this==other+D is to attempt to create these two relationships: this>other+min(C,D)-1 &&
// this<other+max(C,D)+1. But only one of these relationships will belong to the set of general
// relationships.
//
// Here's an example of this in action:
//
// for (var i = a; ; ++i) { }
//
// Without C being constrained to -1,0,1, we could end up looping forever: first we'd say
// that i==a, then we might say that i<a+2, then i<a+3, then i<a+4, etc. We won't do this
// because i<a+2 is not a valid general relationship: so when we merge i==a from the first
// iteration and i==a+1 from the second iteration, we create i>a-1 and i<a+2 but then
// realize that only i>a-1 is a valid general relationship. This gives us exactly what we
// want: a statement that i>=a.
//
// However, this may return a pair of relationships when merging relationships involving
// constants. For example, if given:
//
// @x == @c
// @x == @d
//
// where @c and @d are constants, then this may pass two relationships to the functor:
//
// @x > min(@c, @d) - 1
// @x < max(@c, @d) + 1
//
// This still allows for convergence, because just as when merging relationships over
// variables, this always picks from a set of general relationships. Hence although this may
// produce two relationships as a result of the merge, the total number of relationships that
// can be present at head of block is limited by O(graph.size^2).
template<typename Functor>
void merge(const Relationship& other, const Functor& functor) const
{
// Handle the super obvious case first.
if (*this == other) {
functor(*this);
return;
}
if (m_left != other.m_left)
return;
if (m_right != other.m_right) {
mergeConstantsImpl(other, functor);
return;
}
ASSERT(sameNodesAs(other));
// This does some interesting permutations to reduce the amount of duplicate code. For
// example:
//
// initially: @a != @b, @a > @b
// @b != @a, @b < @a
// @b < @a, @b != @a
// finally: @b != a, @b < @a
//
// Another example:
//
// initially: @a < @b, @a != @b
// finally: @a != @b, @a < @b
Relationship a = *this;
Relationship b = other;
bool needFlip = false;
// Get rid of GreaterThan.
if (a.m_kind == GreaterThan || b.m_kind == GreaterThan) {
a = a.flipped();
b = b.flipped();
// In rare cases, we might not be able to flip. Just give up on life in those
// cases.
if (!a || !b)
return;
needFlip = true;
// If we still have GreaterThan, then it means that we started with @a < @b and
// @a > @b. That's pretty much always a tautology; we don't attempt to do smart
// things for that case for now.
if (a.m_kind == GreaterThan || b.m_kind == GreaterThan)
return;
}
// Make sure that if we have a LessThan, then it's first.
if (b.m_kind == LessThan)
std::swap(a, b);
// Make sure that if we have a NotEqual, then it's first.
if (b.m_kind == NotEqual)
std::swap(a, b);
Relationship result = a.mergeImpl(b);
if (!result)
return;
if (needFlip)
result = result.flipped();
functor(result);
}
// Attempts to construct one Relationship that adequately summarizes the intersection of
// this and other. Returns a null relationship if the filtration should be expressed as two
// different relationships. Returning null is always safe because relationship lists in
// this phase always imply intersection. So, you could soundly skip calling this method and
// just put both relationships into the list. But, that could lead the fixpoint to diverge.
// Hence this will attempt to combine the two relationships into one as a convergence hack.
// In some cases, it will do something conservative. It's always safe for this to return
// *this, or to return other. It'll do that sometimes, mainly to accelerate convergence for
// things that we don't think are important enough to slow down the analysis.
Relationship filter(const Relationship& other) const
{
// We are only interested in merging relationships over the same nodes.
ASSERT(sameNodesAs(other));
if (*this == other)
return *this;
// From here we can assume that the two relationships are not identical. Usually we use
// this to assume that we have different offsets anytime that everything but the offset
// is identical.
// We want equality to take precedent over everything else, and we don't want multiple
// independent claims of equality. That would just be a contradiction. When it does
// happen, we will be conservative in the sense that we will pick one.
if (m_kind == Equal)
return *this;
if (other.m_kind == Equal)
return other;
// Useful helper for flipping.
auto filterFlipped = [&] () -> Relationship {
// If we cannot flip, then just conservatively return *this.
Relationship a = flipped();
Relationship b = other.flipped();
if (!a || !b)
return *this;
Relationship result = a.filter(b);
if (!result)
return Relationship();
result = result.flipped();
if (!result)
return *this;
return result;
};
if (m_kind == NotEqual) {
if (other.m_kind == NotEqual) {
// We could do something smarter here. We could even keep both NotEqual's. We
// would need to make sure that we correctly collapsed them when merging. But
// for now, we just pick one of them and hope for the best.
return *this;
}
if (other.m_kind == GreaterThan) {
// Implement this in terms of NotEqual.filter(LessThan).
return filterFlipped();
}
ASSERT(other.m_kind == LessThan);
// We have two claims:
// @a != @b + C
// @a < @b + D
//
// If C >= D, then the NotEqual is redundant.
// If C < D - 1, then we could keep both, but for now we just keep the LessThan.
// If C == D - 1, then the LessThan can be turned into:
//
// @a < @b + C
//
// Note that C == this.m_offset, D == other.m_offset.
if (m_offset == other.m_offset - 1)
return Relationship(m_left, m_right, LessThan, m_offset);
return other;
}
if (other.m_kind == NotEqual)
return other.filter(*this);
if (m_kind == LessThan) {
if (other.m_kind == LessThan) {
return Relationship(
m_left, m_right, LessThan, std::min(m_offset, other.m_offset));
}
ASSERT(other.m_kind == GreaterThan);
if (sumOverflows<int>(m_offset, -1))
return Relationship();
if (sumOverflows<int>(other.m_offset, 1))
return Relationship();
if (m_offset - 1 == other.m_offset + 1)
return Relationship(m_left, m_right, Equal, m_offset - 1);
return Relationship();
}
ASSERT(m_kind == GreaterThan);
return filterFlipped();
}
// Come up with a relationship that is the best description of this && other, provided that left() is
// the same and right() is a constant. Also requires that this is at least as vague as other. It may
// return this or it may return something else, but whatever it returns, it will have the same nodes as
// this. This is not automatically done by filter() because it currently only makes sense to call this
// during a very particular part of setOneSide().
Relationship filterConstant(const Relationship& other) const
{
ASSERT(m_left == other.m_left);
ASSERT(m_right->isInt32Constant());
ASSERT(other.m_right->isInt32Constant());
ASSERT(vagueness() >= other.vagueness());
if (vagueness() == other.vagueness())
return *this;
int thisRight = m_right->asInt32();
int otherRight = other.m_right->asInt32();
// Ignore funny business.
if (sumOverflows<int>(otherRight, other.m_offset))
return *this;
int otherEffectiveRight = otherRight + other.m_offset;
switch (other.m_kind) {
case Equal:
if (differenceOverflows<int>(otherEffectiveRight, thisRight))
return *this;
// Return a version of *this that is Equal to other's constant.
return Relationship(m_left, m_right, Equal, otherEffectiveRight - thisRight);
case LessThan:
case GreaterThan:
ASSERT(m_kind == NotEqual);
// We could do smart things here. But we don't currently have an example of when it would be
// valuable. Note that you have to be careful. We could refine NotEqual to LessThan, but only
// if the LessThan subsumes the NotEqual.
return *this;
case NotEqual:
RELEASE_ASSERT_NOT_REACHED();
return Relationship();
}
RELEASE_ASSERT_NOT_REACHED();
return Relationship();
}
int minValueOfLeft() const
{
if (m_left->isInt32Constant())
return m_left->asInt32();
if (m_kind == LessThan || m_kind == NotEqual)
return std::numeric_limits<int>::min();
int minRightValue = std::numeric_limits<int>::min();
if (m_right->isInt32Constant())
minRightValue = m_right->asInt32();
if (m_kind == GreaterThan)
return clampedSum(minRightValue, m_offset, 1);
ASSERT(m_kind == Equal);
return clampedSum(minRightValue, m_offset);
}
int maxValueOfLeft() const
{
if (m_left->isInt32Constant())
return m_left->asInt32();
if (m_kind == GreaterThan || m_kind == NotEqual)
return std::numeric_limits<int>::max();
int maxRightValue = std::numeric_limits<int>::max();
if (m_right->isInt32Constant())
maxRightValue = m_right->asInt32();
if (m_kind == LessThan)
return clampedSum(maxRightValue, m_offset, -1);
ASSERT(m_kind == Equal);
return clampedSum(maxRightValue, m_offset);
}
void dump(PrintStream& out) const
{
// This prints out the relationship without any whitespace, like @x<@y+42. This
// optimizes for the clarity of a list of relationships. It's easier to read something
// like [@1<@2+3, @4==@5-6] than it would be if there was whitespace inside the
// relationships.
if (!*this) {
out.print("null");
return;
}
out.print(m_left);
switch (m_kind) {
case LessThan:
out.print("<");
break;
case Equal:
out.print("==");
break;
case NotEqual:
out.print("!=");
break;
case GreaterThan:
out.print(">");
break;
}
out.print(m_right);
if (m_offset > 0)
out.print("+", m_offset);
else if (m_offset < 0)
out.print("-", -static_cast<int64_t>(m_offset));
}
private:
Relationship mergeImpl(const Relationship& other) const
{
ASSERT(sameNodesAs(other));
ASSERT(m_kind != GreaterThan);
ASSERT(other.m_kind != GreaterThan);
ASSERT(*this != other);
// The purpose of this method is to guarantee that:
//
// - We avoid having more than one Relationship over the same two nodes. Therefore, if
// the merge could be expressed as two Relationships, we prefer to instead pick the
// less precise single Relationship form even if that means TOP.
//
// - If the difference between two Relationships is just the m_offset, then we create a
// Relationship that has an offset of -1, 0, or 1. This is an essential convergence
// hack. We need -1 and 1 to support <= and >=.
// From here we can assume that the two relationships are not identical. Usually we use
// this to assume that we have different offsets anytime that everything but the offset
// is identical.
if (m_kind == NotEqual) {
if (other.m_kind == NotEqual)
return Relationship(); // Different offsets, so tautology.
if (other.m_kind == Equal) {
if (m_offset != other.m_offset) {
// Saying that you might be B when you've already said that you're anything
// but A, where A and B are different, is a tautology. You could just say
// that you're anything but A. Adding "(a == b + 1)" to "(a != b + 5)" has
// no value.
return *this;
}
// Otherwise, same offsets: we're saying that you're either A or you're not
// equal to A.
return Relationship();
}
RELEASE_ASSERT(other.m_kind == LessThan);
// We have these claims, and we're merging them:
// @a != @b + C
// @a < @b + D
//
// If we have C == D, then the merge is clearly just the NotEqual.
// If we have C < D, then the merge is a tautology.
// If we have C > D, then we could keep both claims, but we are cheap, so we
// don't. We just use the NotEqual.
if (m_offset < other.m_offset)
return Relationship();
return *this;
}
if (m_kind == LessThan) {
if (other.m_kind == LessThan) {
// Figure out what offset to select to merge them. The appropriate offsets are
// -1, 0, or 1.
// First figure out what offset we'd like to use.
int bestOffset = std::max(m_offset, other.m_offset);
// We have something like @a < @b + 2. We can't represent this under the
// -1,0,1 rule.
if (isGeneralOffset(bestOffset))
return Relationship(m_left, m_right, LessThan, std::max(bestOffset, -1));
return Relationship();
}
// The only thing left is Equal. We would have eliminated the GreaterThan's, and
// if we merge LessThan and NotEqual, the NotEqual always comes first.
RELEASE_ASSERT(other.m_kind == Equal);
// This is the really interesting case. We have:
//
// @a < @b + C
//
// and:
//
// @a == @b + D
//
// Therefore we'd like to return:
//
// @a < @b + max(C, D + 1)
if (sumOverflows<int32_t>(other.m_offset, 1))
return Relationship();
int bestOffset = std::max(m_offset, other.m_offset + 1);
// We have something like @a < @b + 2. We can't do it.
if (isGeneralOffset(bestOffset))
return Relationship(m_left, m_right, LessThan, std::max(bestOffset, -1));
return Relationship();
}
// The only thing left is Equal, since we would have gotten rid of the GreaterThan's.
RELEASE_ASSERT(m_kind == Equal);
// We would never see NotEqual, because those always come first. We would never
// see GreaterThan, because we would have eliminated those. We would never see
// LessThan, because those always come first.
RELEASE_ASSERT(other.m_kind == Equal);
// We have @a == @b + C and @a == @b + D, where C != D. Turn this into some
// inequality that involves a constant that is -1,0,1. Note that we will never have
// lessThan and greaterThan because the constants are constrained to -1,0,1. The only
// way for both of them to be valid is a<b+1 and a>b-1, but then we would have said
// a==b.
Relationship lessThan;
Relationship greaterThan;
int lessThanEqOffset = std::max(m_offset, other.m_offset);
if (lessThanEqOffset >= -2 && lessThanEqOffset <= 0) {
lessThan = Relationship(
m_left, other.m_right, LessThan, lessThanEqOffset + 1);
ASSERT(isGeneralOffset(lessThan.offset()));
}
int greaterThanEqOffset = std::min(m_offset, other.m_offset);
if (greaterThanEqOffset >= 0 && greaterThanEqOffset <= 2) {
greaterThan = Relationship(
m_left, other.m_right, GreaterThan, greaterThanEqOffset - 1);
ASSERT(isGeneralOffset(greaterThan.offset()));
}
if (lessThan) {
// Both relationships cannot be valid; see above.
RELEASE_ASSERT(!greaterThan);
return lessThan;
}
return greaterThan;
}
template<typename Functor>
void mergeConstantsImpl(const Relationship& other, const Functor& functor) const
{
ASSERT(m_left == other.m_left);
// Only deal with constant right.
if (!m_right->isInt32Constant() || !other.m_right->isInt32Constant())
return;
// What follows is a fairly conservative merge. We could tune this phase to come up with
// all possible inequalities between variables and constants, but we focus mainly on cheap
// cases for now.
// Here are some of the arrangements we can merge usefully assuming @c < @d:
//
// @x == @c || @x == @d => @x >= c && @x <= @d
// @x >= @c || @x <= @d => TOP
// @x == @c || @x != @d => @x != @d
int thisRight = m_right->asInt32();
int otherRight = other.m_right->asInt32();
// Ignore funny business.
if (sumOverflows<int>(thisRight, m_offset))
return;
if (sumOverflows<int>(otherRight, other.m_offset))
return;
int thisEffectiveRight = thisRight + m_offset;
int otherEffectiveRight = otherRight + other.m_offset;
auto makeUpper = [&] (int64_t upper) {
if (upper <= thisRight) {
// We want m_right + offset to be equal to upper. Hence we want offset to cancel
// with m_right. But there's more to it, since we want +1 to turn the LessThan into
// a LessThanOrEqual, and we want to make sure we don't end up with non-general
// offsets.
int offset = static_cast<int>(std::max(
static_cast<int64_t>(1) + upper - static_cast<int64_t>(thisRight),
static_cast<int64_t>(-1)));
functor(Relationship(m_left, m_right, LessThan, offset));
}
if (upper <= otherRight) {
int offset = static_cast<int>(std::max(
static_cast<int64_t>(1) + upper - static_cast<int64_t>(otherRight),
static_cast<int64_t>(-1)));
functor(Relationship(m_left, other.m_right, LessThan, offset));
}
};
auto makeLower = [&] (int64_t lower) {
if (lower >= thisRight) {
// We want m_right + offset to be equal to lower. Hence we want offset to cancel with
// m_right. But there's more to it, since we want -1 to turn the GreaterThan into a
// GreaterThanOrEqual, and we want to make sure we don't end up with non-general
// offsets.
int offset = static_cast<int>(std::min(
static_cast<int64_t>(-1) + lower - static_cast<int64_t>(thisRight),
static_cast<int64_t>(1)));
functor(Relationship(m_left, m_right, GreaterThan, offset));
}
if (lower >= otherRight) {
int offset = static_cast<int>(std::min(
static_cast<int64_t>(-1) + lower - static_cast<int64_t>(otherRight),
static_cast<int64_t>(1)));
functor(Relationship(m_left, other.m_right, GreaterThan, offset));
}
};
switch (m_kind) {
case Equal: {
switch (other.m_kind) {
case Equal: {
if (thisEffectiveRight == otherEffectiveRight) {
// This probably won't arise often. We can keep whichever relationship is general.
if (isGeneralOffset(m_offset))
functor(*this);
if (isGeneralOffset(other.m_offset))
functor(other);
return;
}
// What follows is the only case where a merge will create more rules than what it
// started with. This is fine for convergence because the LessThan/GreaterThan
// rules that this creates are general (i.e. have small offsets) and they never
// spawn more rules upon subsequent merging.
makeUpper(std::max(thisEffectiveRight, otherEffectiveRight));
makeLower(std::min(thisEffectiveRight, otherEffectiveRight));
return;
}
case LessThan: {
// Either the LessThan condition subsumes the equality, or the LessThan condition
// and equality merge together to create a looser LessThan condition.
// This is @x == thisEffectiveRight
// Other is: @x < otherEffectiveRight
// We want to create @x <= upper. Figure out the value of upper.
makeUpper(std::max(
static_cast<int64_t>(thisEffectiveRight),
static_cast<int64_t>(otherEffectiveRight) - 1));
return;
}
case GreaterThan: {
// Opposite of the LessThan case, above.
// This is: @x == thisEffectiveRight
// Other is: @x > otherEffectiveRight
makeLower(std::min(
static_cast<int64_t>(thisEffectiveRight),
static_cast<int64_t>(otherEffectiveRight) + 1));
return;
}
case NotEqual: {
// We keep the NotEqual so long as it doesn't contradict our Equal.
if (otherEffectiveRight == thisEffectiveRight)
return;
// But, we only keep the NotEqual if it is general. This simplifies reasoning about
// convergence: merging never introduces a new rule unless that rule is general.
if (!isGeneralOffset(other.m_offset))
return;
functor(other);
return;
} }
RELEASE_ASSERT_NOT_REACHED();
return;
}
case LessThan: {
switch (other.m_kind) {
case Equal: {
other.mergeConstantsImpl(*this, functor);
return;
}
case LessThan: {
makeUpper(std::max(
static_cast<int64_t>(thisEffectiveRight) - 1,
static_cast<int64_t>(otherEffectiveRight) - 1));
return;
}
case GreaterThan: {
// We have a claim that @x > @c || @x < @d. If @d > @c, this is the tautology. If
// @d <= @c, it's sort of uninteresting. Just ignore this.
return;
}
case NotEqual: {
// We have a claim that @x < @c || @x != @d. This isn't interesting.
return;
} }
RELEASE_ASSERT_NOT_REACHED();
return;
}
case GreaterThan: {
switch (other.m_kind) {
case Equal: {
other.mergeConstantsImpl(*this, functor);
return;
}
case LessThan: {
// Not interesting, see above.
return;
}
case GreaterThan: {
makeLower(std::min(
static_cast<int64_t>(thisEffectiveRight) + 1,
static_cast<int64_t>(otherEffectiveRight) + 1));
return;
}
case NotEqual: {
// Not interesting, see above.
return;
} }
RELEASE_ASSERT_NOT_REACHED();
return;
}
case NotEqual: {
if (other.m_kind == Equal)
other.mergeConstantsImpl(*this, functor);
return;
} }
RELEASE_ASSERT_NOT_REACHED();
}
NodeFlowProjection m_left;
NodeFlowProjection m_right;
Kind m_kind;
int m_offset; // This offset can be arbitrarily large.
};
typedef UncheckedKeyHashMap<NodeFlowProjection, Vector<Relationship>> RelationshipMap;
class IntegerRangeOptimizationPhase : public Phase {
public:
IntegerRangeOptimizationPhase(Graph& graph)
: Phase(graph, "integer range optimization"_s)
, m_zero(nullptr)
, m_relationshipsAtHead(graph)
, m_insertionSet(graph)
{
}
bool run()
{
ASSERT(m_graph.m_form == SSA);
// Before we do anything, make sure that we have a zero constant at the top.
for (Node* node : *m_graph.block(0)) {
if (node->isInt32Constant() && !node->asInt32()) {
m_zero = node;
break;
}
}
if (!m_zero) {
m_zero = m_insertionSet.insertConstant(0, m_graph.block(0)->at(0)->origin, jsNumber(0));
m_insertionSet.execute(m_graph.block(0));
}
dataLogIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, "Graph before integer range optimization:\n", m_graph);
// This performs a fixpoint over the blocks in reverse post-order. Logically, we
// maintain a list of relationships at each point in the program. The list should be
// read as an intersection. For example if we have {rel1, rel2, ..., relN}, you should
// read this as:
//
// TOP && rel1 && rel2 && ... && relN
//
// This allows us to express things like:
//
// @a > @b - 42 && @a < @b + 25
//
// But not things like:
//
// @a < @b - 42 || @a > @b + 25
//
// We merge two lists by merging each relationship in one list with each relationship
// in the other list. Merging two relationships will yield a relationship list; as with
// all such lists it is an intersection. Merging relationships over different variables
// always yields the empty list (i.e. TOP). This merge style is sound because if we
// have:
//
// (A && B && C) || (D && E && F)
//
// Then a valid merge is just one that will return true if A, B, C are all true, or
// that will return true if D, E, F are all true. Our merge style essentially does:
//
// (A || D) && (A || E) && (A || F) && (B || D) && (B || E) && (B || F) &&
// (C || D) && (C || E) && (C || F)
//
// If A && B && C is true, then this returns true. If D && E && F is true, this also
// returns true.
//
// While this appears at first like a kind of expression explosion, in practice it
// isn't. The code that handles this knows that the merge of two relationships over
// different variables is TOP (i.e. the empty list). For example if A above is @a < @b
// and B above is @c > @d, where @a, @b, @c, and @d are different nodes, the merge will
// yield nothing. In fact, the merge algorithm will skip such merges entirely because
// the relationship lists are actually keyed by node.
//
// Note that it's always safe to drop any of relationship from the relationship list.
// This merely increases the likelihood of the "expression" yielding true, i.e. being
// closer to TOP. Optimizations are only performed if we can establish that the
// expression implied by the relationship list is false for all of those cases where
// some check would have failed.
//
// There is no notion of BOTTOM because we treat blocks that haven't had their
// state-at-head set as a special case: we just transfer all live relationships to such
// a block. After the head of a block is set, we perform the merging as above. In all
// other places where we would ordinarily need BOTTOM, we approximate it by having some
// non-BOTTOM relationship.
BlockList postOrder = m_graph.blocksInPostOrder();
// This loop analyzes the IR to give us m_relationshipsAtHead for each block. This
// may reexecute blocks many times, but it is guaranteed to converge. The state of
// the relationshipsAtHead over any pair of nodes converge monotonically towards the
// TOP relationship (i.e. no relationships in the relationship list). The merge rule
// when between the current relationshipsAtHead and the relationships being propagated
// from a predecessor ensures monotonicity by converting disagreements into one of a
// small set of "general" relationships. There are 12 such relationships, plus TOP. See
// the comment above Relationship::merge() for details.
bool changed = true;
while (changed) {
++m_iterations;
if (m_iterations >= giveUpThreshold) {
// This case is not necessarily wrong but it can be a sign that this phase
// does not converge. The value giveUpThreshold was chosen emperically based on
// current tests and real world JS.
// If you hit this case for a legitimate reason, update the giveUpThreshold
// to the smallest values that converges.
// Do not risk holding the thread for too long since this phase is really slow.
return false;
}
changed = false;
for (unsigned postOrderIndex = postOrder.size(); postOrderIndex--;) {
BasicBlock* block = postOrder[postOrderIndex];
DFG_ASSERT(
m_graph, nullptr,
block == m_graph.block(0) || m_seenBlocks.contains(block));
m_relationships = m_relationshipsAtHead[block];
for (auto* node : *block) {
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, "Analysis: at ", node, ": ", listDump(sortedRelationships()));
executeNode(node);
}
// Now comes perhaps the most important piece of cleverness: if we Branch, and
// the predicate involves some relation over integers, we propagate different
// information to the taken and notTaken paths. This handles:
// - Branch on int32.
// - Branch on LogicalNot on int32.
// - Branch on compare on int32's.
// - Branch on LogicalNot of compare on int32's.
Node* terminal = block->terminal();
bool alreadyMerged = false;
if (terminal->op() == Branch) {
Relationship relationshipForTrue;
BranchData* branchData = terminal->branchData();
bool invert = false;
if (terminal->child1()->op() == LogicalNot) {
terminal = terminal->child1().node();
invert = true;
}
if (terminal->child1().useKind() == Int32Use) {
relationshipForTrue = Relationship::safeCreate(
terminal->child1().node(), m_zero, Relationship::NotEqual, 0);
} else {
// FIXME: Handle CompareBelow and CompareBelowEq.
Node* compare = terminal->child1().node();
switch (compare->op()) {
case CompareEq:
case CompareStrictEq:
case CompareLess:
case CompareLessEq:
case CompareGreater:
case CompareGreaterEq: {
if (!compare->isBinaryUseKind(Int32Use))
break;
switch (compare->op()) {
case CompareEq:
case CompareStrictEq:
relationshipForTrue = Relationship::safeCreate(
compare->child1().node(), compare->child2().node(),
Relationship::Equal, 0);
break;
case CompareLess:
relationshipForTrue = Relationship::safeCreate(
compare->child1().node(), compare->child2().node(),
Relationship::LessThan, 0);
break;
case CompareLessEq:
relationshipForTrue = Relationship::safeCreate(
compare->child1().node(), compare->child2().node(),
Relationship::LessThan, 1);
break;
case CompareGreater:
relationshipForTrue = Relationship::safeCreate(
compare->child1().node(), compare->child2().node(),
Relationship::GreaterThan, 0);
break;
case CompareGreaterEq:
relationshipForTrue = Relationship::safeCreate(
compare->child1().node(), compare->child2().node(),
Relationship::GreaterThan, -1);
break;
default:
DFG_CRASH(m_graph, compare, "Invalid comparison node type");
break;
}
break;
}
default:
break;
}
}
if (invert)
relationshipForTrue = relationshipForTrue.inverse();
if (relationshipForTrue) {
RelationshipMap forTrue = m_relationships;
RelationshipMap forFalse = m_relationships;
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, "Dealing with true:");
setRelationship(forTrue, relationshipForTrue);
if (Relationship relationshipForFalse = relationshipForTrue.inverse()) {
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, "Dealing with false:");
setRelationship(forFalse, relationshipForFalse);
}
changed |= mergeTo(forTrue, branchData->taken.block);
changed |= mergeTo(forFalse, branchData->notTaken.block);
alreadyMerged = true;
}
}
if (!alreadyMerged) {
for (BasicBlock* successor : block->successors())
changed |= mergeTo(m_relationships, successor);
}
}
}
// Now we transform the code based on the results computed in the previous loop.
changed = false;
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
m_relationships = m_relationshipsAtHead[block];
for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
Node* node = block->at(nodeIndex);
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, "Transformation: at ", node, ": ", listDump(sortedRelationships()));
// This ends up being pretty awkward to write because we need to decide if we
// optimize by using the relationships before the operation, but we need to
// call executeNode() before we optimize.
switch (node->op()) {
case ArithAbs: {
if (node->child1().useKind() != Int32Use)
break;
auto iter = m_relationships.find(node->child1().node());
if (iter == m_relationships.end())
break;
int minValue = std::numeric_limits<int>::min();
int maxValue = std::numeric_limits<int>::max();
for (Relationship relationship : iter->value) {
minValue = std::max(minValue, relationship.minValueOfLeft());
maxValue = std::min(maxValue, relationship.maxValueOfLeft());
}
executeNode(block->at(nodeIndex));
if (minValue >= 0) {
node->convertToIdentityOn(node->child1().node());
changed = true;
break;
}
bool absIsUnchecked = !shouldCheckOverflow(node->arithMode());
if (maxValue < 0 || (absIsUnchecked && maxValue <= 0)) {
node->convertToArithNegate();
if (absIsUnchecked || minValue > std::numeric_limits<int>::min())
node->setArithMode(Arith::Unchecked);
changed = true;
break;
}
if (minValue > std::numeric_limits<int>::min()) {
node->setArithMode(Arith::Unchecked);
changed = true;
break;
}
break;
}
case ArithAdd: {
if (!node->isBinaryUseKind(Int32Use))
break;
if (node->arithMode() != Arith::CheckOverflow)
break;
if (!node->child2()->isInt32Constant())
break;
auto iter = m_relationships.find(node->child1().node());
if (iter == m_relationships.end())
break;
int minValue = std::numeric_limits<int>::min();
int maxValue = std::numeric_limits<int>::max();
for (Relationship relationship : iter->value) {
minValue = std::max(minValue, relationship.minValueOfLeft());
maxValue = std::min(maxValue, relationship.maxValueOfLeft());
}
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, " minValue = ", minValue, ", maxValue = ", maxValue);
if (sumOverflows<int>(minValue, node->child2()->asInt32()) ||
sumOverflows<int>(maxValue, node->child2()->asInt32()))
break;
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, " It's in bounds.");
executeNode(block->at(nodeIndex));
node->setArithMode(Arith::Unchecked);
changed = true;
break;
}
case CheckInBounds: {
auto iter = m_relationships.find(node->child1().node());
if (iter == m_relationships.end())
break;
bool nonNegative = false;
bool lessThanLength = false;
for (Relationship relationship : iter->value) {
if (relationship.minValueOfLeft() >= 0)
nonNegative = true;
if (relationship.right() == node->child2().node()) {
if (relationship.kind() == Relationship::Equal
&& relationship.offset() < 0)
lessThanLength = true;
if (relationship.kind() == Relationship::LessThan
&& relationship.offset() <= 0)
lessThanLength = true;
}
}
if (DFGIntegerRangeOptimizationPhaseInternal::verbose)
dataLogLn("CheckInBounds ", node, " has: ", nonNegative, " ", lessThanLength);
if (nonNegative && lessThanLength) {
executeNode(block->at(nodeIndex));
if (UNLIKELY(Options::validateBoundsCheckElimination()) && node->op() == CheckInBounds)
m_insertionSet.insertNode(nodeIndex, SpecNone, AssertInBounds, node->origin, node->child1(), node->child2());
// We just need to make sure we are a value-producing node.
node->convertToIdentityOn(node->child1().node());
changed = true;
}
break;
}
case EnumeratorGetByVal:
case GetByVal: {
if (node->arrayMode().type() != Array::Undecided)
break;
auto iter = m_relationships.find(m_graph.varArgChild(node, 1).node());
if (iter == m_relationships.end())
break;
int minValue = std::numeric_limits<int>::min();
for (Relationship relationship : iter->value)
minValue = std::max(minValue, relationship.minValueOfLeft());
if (minValue < 0)
break;
executeNode(block->at(nodeIndex));
m_graph.convertToConstant(node, jsUndefined());
changed = true;
break;
}
default:
break;
}
executeNode(block->at(nodeIndex));
}
}
return changed;
}
private:
void executeNode(Node* node)
{
switch (node->op()) {
// FIXME: Teach this about EnumeratorNextExtractIndex.
case CheckInBounds: {
setRelationship(Relationship::safeCreate(node->child1().node(), node->child2().node(), Relationship::LessThan));
setRelationship(Relationship::safeCreate(node->child1().node(), m_zero, Relationship::GreaterThan, -1));
break;
}
case ArithAbs: {
if (node->child1().useKind() != Int32Use)
break;
// If ArithAbs cares about overflow, then INT32_MIN input will cause OSR exit.
// Thus we can safely say `x >= 0`.
if (shouldCheckOverflow(node->arithMode())) {
setRelationship(Relationship(node, m_zero, Relationship::GreaterThan, -1));
break;
}
// If ArithAbs does not care about overflow, it can return INT32_MIN if the input is INT32_MIN.
// If minValue is not INT32_MIN, we can still say it is `x >= 0`.
int minValue = std::numeric_limits<int>::min();
auto iter = m_relationships.find(node->child1().node());
if (iter != m_relationships.end()) {
for (Relationship relationship : iter->value)
minValue = std::max(minValue, relationship.minValueOfLeft());
}
if (minValue > std::numeric_limits<int>::min())
setRelationship(Relationship(node, m_zero, Relationship::GreaterThan, -1));
break;
}
case ArithAdd: {
// We're only interested in int32 additions and we currently only know how to
// handle the non-wrapping ones.
if (!node->isBinaryUseKind(Int32Use))
break;
// FIXME: We could handle the unchecked arithmetic case. We just do it don't right
// now.
if (node->arithMode() != Arith::CheckOverflow)
break;
// Handle add: @value + constant.
if (!node->child2()->isInt32Constant())
break;
int offset = node->child2()->asInt32();
// We add a relationship for @add == @value + constant, and then we copy the
// relationships for @value. This gives us a one-deep view of @value's existing
// relationships, which matches the one-deep search in setRelationship().
setRelationship(
Relationship(node, node->child1().node(), Relationship::Equal, offset));
auto iter = m_relationships.find(node->child1().node());
if (iter != m_relationships.end()) {
Vector<Relationship> toAdd;
for (Relationship relationship : iter->value) {
// We have:
// add: ArithAdd(@x, C)
// @x op @y + D
//
// The following certainly holds:
// @x == @add - C
//
// Which allows us to substitute:
// @add - C op @y + D
//
// And then carry the C over:
// @add op @y + D + C
Relationship newRelationship = relationship;
ASSERT(newRelationship.left() == node->child1().node());
if (newRelationship.right() == node)
continue;
newRelationship.setLeft(node);
if (newRelationship.addToOffset(offset))
toAdd.append(newRelationship);
}
for (Relationship relationship : toAdd)
setRelationship(relationship, 0);
}
// Now we want to establish that both the input and the output of the addition are
// within a particular range of integers.
if (offset > 0) {
// If we have "add: @value + 1" then we know that @value <= max - 1, i.e. that
// @value < max.
if (!sumOverflows<int>(std::numeric_limits<int>::max(), -offset, 1)) {
setRelationship(
Relationship::safeCreate(
node->child1().node(), m_zero, Relationship::LessThan,
std::numeric_limits<int>::max() - offset + 1),
0);
}
// If we have "add: @value + 1" then we know that @add >= min + 1, i.e. that
// @add > min.
if (!sumOverflows<int>(std::numeric_limits<int>::min(), offset, -1)) {
setRelationship(
Relationship(
node, m_zero, Relationship::GreaterThan,
std::numeric_limits<int>::min() + offset - 1),
0);
}
}
if (offset < 0 && offset != std::numeric_limits<int>::min()) {
// If we have "add: @value - 1" then we know that @value >= min + 1, i.e. that
// @value > min.
if (!sumOverflows<int>(std::numeric_limits<int>::min(), offset, -1)) {
setRelationship(
Relationship::safeCreate(
node->child1().node(), m_zero, Relationship::GreaterThan,
std::numeric_limits<int>::min() + offset - 1),
0);
}
// If we have "add: @value + 1" then we know that @add <= max - 1, i.e. that
// @add < max.
if (!sumOverflows<int>(std::numeric_limits<int>::max(), -offset, 1)) {
setRelationship(
Relationship(
node, m_zero, Relationship::LessThan,
std::numeric_limits<int>::max() - offset + 1),
0);
}
}
break;
}
case GetArrayLength:
case GetVectorLength:
case GetUndetachedTypeArrayLength: {
setRelationship(Relationship(node, m_zero, Relationship::GreaterThan, -1));
break;
}
case Upsilon: {
auto shadowNode = NodeFlowProjection(node->phi(), NodeFlowProjection::Shadow);
// We must first remove all relationships involving the shadow node, because setEquivalence does not overwrite them.
// Overwriting is only required here because the shadowNodes are not in SSA form (can be written to by several Upsilons).
// Another way to think of it, is that we are maintaining the invariant that relationshipMaps are pruned by liveness.
kill(shadowNode);
setEquivalence(node->child1().node(), shadowNode);
break;
}
case Phi: {
setEquivalence(
NodeFlowProjection(node, NodeFlowProjection::Shadow),
node);
break;
}
default:
break;
}
}
void kill(NodeFlowProjection node)
{
m_relationships.remove(node);
for (auto& relationships : m_relationships.values()) {
unsigned i = 0, j = 0;
while (i < relationships.size()) {
const Relationship& rel = relationships[i++];
ASSERT(rel.left() != node);
if (rel.right() != node)
relationships[j++] = rel;
}
relationships.shrink(j);
}
}
void setEquivalence(NodeFlowProjection oldNode, NodeFlowProjection newNode)
{
setRelationship(Relationship::safeCreate(oldNode, newNode, Relationship::Equal, 0));
auto iter = m_relationships.find(oldNode);
if (iter != m_relationships.end()) {
Vector<Relationship> toAdd;
for (Relationship relationship : iter->value) {
Relationship newRelationship = relationship;
// Avoid creating any kind of self-relationship.
if (newNode.node() == newRelationship.right().node())
continue;
newRelationship.setLeft(newNode);
toAdd.append(newRelationship);
}
for (Relationship relationship : toAdd)
setRelationship(relationship);
}
}
void setRelationship(Relationship relationship, unsigned timeToLive = 1)
{
setRelationship(m_relationships, relationship, timeToLive);
}
void setRelationship(
RelationshipMap& relationshipMap, Relationship relationship, unsigned timeToLive = 1)
{
setOneSide(relationshipMap, relationship, timeToLive);
setOneSide(relationshipMap, relationship.flipped(), timeToLive);
}
void setOneSide(
RelationshipMap& relationshipMap, Relationship relationship, unsigned timeToLive = 1)
{
if (!relationship)
return;
if (DFGIntegerRangeOptimizationPhaseInternal::verbose)
dataLogLn(" Setting: ", relationship, " (ttl = ", timeToLive, ")");
auto result = relationshipMap.add(
relationship.left(), Vector<Relationship>());
Vector<Relationship>& relationships = result.iterator->value;
if (relationship.right()->isInt32Constant()) {
// We want to do some work to refine relationships over constants. This is necessary because
// when we introduce a constant into the IR, we don't automatically create relationships
// between that constant and the other constants. That means that when we do introduce
// relationships between a non-constant and a constant, we need to check the other
// relationships between that non-constant and other constants to see if we can make some
// refinements. Possible constant statement filtrations:
//
// - @x == @c and @x != @d, where @c > @d:
// @x == @c and @x > @d
//
// but actually we are more aggressive:
//
// - @x == @c and @x op @d where @c == @d + k
// @x == @c and @x == @d + k
//
// And this is also possible:
//
// - @x > @c and @x != @d where @c == @d + k and k >= 0
//
// @x > @c and @x > @d + k
//
// So, here's what we should do depending on the kind of relationship we're introducing:
//
// Equal constant: Find all LessThan, NotEqual, and GreaterThan constant operations and refine
// them to be Equal constant. Don't worry about contradictions.
//
// LessThan, GreaterThan constant: See if there is any Equal constant, and if so, refine to
// that. Otherwise, find all NotEqual constant operations and refine them to be LessThan or
// GreaterThan constant if possible.
//
// NotEqual constant: See if there is any Equal constant, and if so, refine to that. Otherwise,
// see if there is any LessThan or GreaterThan constant operation, and if so, attempt to
// refine to that.
//
// Seems that the key thing is to have a filterConstant() operation that returns a refined
// version of *this based on other. The code here accomplishes this by using the vagueness
// index (Relationship::vagueness()) to first find less vague relationships and refine this one
// using them, and then find more vague relationships and refine those to this.
if (relationship.vagueness() != Relationship::minVagueness) {
// We're not minimally vague (maximally specific), so try to refine ourselves based on what
// we already know.
for (Relationship& otherRelationship : relationships) {
if (otherRelationship.vagueness() < relationship.vagueness()
&& otherRelationship.right()->isInt32Constant()) {
Relationship newRelationship = relationship.filterConstant(otherRelationship);
if (DFGIntegerRangeOptimizationPhaseInternal::verbose && newRelationship != relationship)
dataLogLn(" Refined to: ", newRelationship, " based on ", otherRelationship);
relationship = newRelationship;
}
}
}
if (relationship.vagueness() != Relationship::maxVagueness) {
// We're not maximally value (minimally specific), so try to refine other relationships
// based on this one.
for (Relationship& otherRelationship : relationships) {
if (otherRelationship.vagueness() > relationship.vagueness()
&& otherRelationship.right()->isInt32Constant()) {
Relationship newRelationship = otherRelationship.filterConstant(relationship);
if (DFGIntegerRangeOptimizationPhaseInternal::verbose && newRelationship != otherRelationship)
dataLogLn(" Refined ", otherRelationship, " to: ", newRelationship);
otherRelationship = newRelationship;
}
}
}
}
Vector<Relationship> toAdd;
bool found = false;
for (Relationship& otherRelationship : relationships) {
if (otherRelationship.sameNodesAs(relationship)) {
if (Relationship filtered = otherRelationship.filter(relationship)) {
ASSERT(filtered.left() == relationship.left());
otherRelationship = filtered;
if (DFGIntegerRangeOptimizationPhaseInternal::verbose)
dataLogLn(" filtered: ", filtered);
found = true;
}
}
// FIXME: Also add filtration over statements about constants. For example, if we have
// @x == @c and @x != @d, where @d > @c, then we want to turn @x != @d into @x < @d.
if (timeToLive && otherRelationship.kind() == Relationship::Equal) {
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, " Considering (lhs): ", otherRelationship);
// We have:
// @a op @b + C
// @a == @c + D
//
// This implies:
// @c + D op @b + C
// @c op @b + C - D
//
// Where: @a == relationship.left(), @b == relationship.right(),
// @a == otherRelationship.left(), @c == otherRelationship.right().
if (otherRelationship.offset() != std::numeric_limits<int>::min()) {
Relationship newRelationship = relationship;
if (newRelationship.right() != otherRelationship.right()) {
newRelationship.setLeft(otherRelationship.right());
if (newRelationship.addToOffset(-otherRelationship.offset()))
toAdd.append(newRelationship);
}
}
}
}
if (timeToLive && relationship.kind() != Relationship::Equal) {
for (Relationship& possibleEquality : relationshipMap.get(relationship.right())) {
if (possibleEquality.kind() != Relationship::Equal
|| possibleEquality.offset() == std::numeric_limits<int>::min()
|| possibleEquality.right() == relationship.left())
continue;
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, " Considering (rhs): ", possibleEquality);
// We have:
// @a op @b + C
// @b == @c + D
//
// This implies:
// @a op @c + (C + D)
//
// Where: @a == relationship.left(), @b == relationship.right()
Relationship newRelationship = relationship;
newRelationship.setRight(possibleEquality.right());
if (newRelationship.addToOffset(possibleEquality.offset()))
toAdd.append(newRelationship);
}
}
if (!found)
relationships.append(relationship);
for (Relationship anotherRelationship : toAdd) {
ASSERT(timeToLive);
setOneSide(relationshipMap, anotherRelationship, timeToLive - 1);
}
}
bool mergeTo(RelationshipMap& relationshipMap, BasicBlock* target)
{
if (DFGIntegerRangeOptimizationPhaseInternal::verbose) {
WTF::dataFile().atomically([&](auto&) {
dataLogLn("Merging to ", pointerDump(target), ":");
dataLogLn(" Incoming: ", listDump(sortedRelationships(relationshipMap)));
dataLogLn(" At head: ", listDump(sortedRelationships(m_relationshipsAtHead[target])));
});
}
if (m_seenBlocks.add(target)) {
// This is a new block. We copy subject to liveness pruning.
auto isLive = [&] (NodeFlowProjection node) {
if (node == m_zero)
return true;
return target->ssa->liveAtHead.contains(node);
};
for (auto& entry : relationshipMap) {
if (!isLive(entry.key))
continue;
Vector<Relationship> values;
for (Relationship relationship : entry.value) {
ASSERT(relationship.left() == entry.key);
if (isLive(relationship.right())) {
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, " Propagating ", relationship);
values.append(relationship);
}
}
std::sort(values.begin(), values.end());
m_relationshipsAtHead[target].add(entry.key, values);
}
return true;
}
// Merge by intersecting. We have no notion of BOTTOM, so we use the omission of
// relationships for a pair of nodes to mean TOP. The reason why we don't need BOTTOM
// is (1) we just overapproximate contradictions and (2) a value never having been
// assigned would only happen if we have not processed the node's predecessor. We
// shouldn't process blocks until we have processed the block's predecessor because we
// are using reverse postorder.
Vector<NodeFlowProjection> toRemove;
bool changed = false;
for (auto& entry : m_relationshipsAtHead[target]) {
auto iter = relationshipMap.find(entry.key);
if (iter == relationshipMap.end()) {
toRemove.append(entry.key);
changed = true;
continue;
}
Vector<Relationship> constantRelationshipsAtHead;
for (Relationship& relationshipAtHead : entry.value) {
if (relationshipAtHead.right()->isInt32Constant())
constantRelationshipsAtHead.append(relationshipAtHead);
}
Vector<Relationship> mergedRelationships;
for (Relationship targetRelationship : entry.value) {
for (Relationship sourceRelationship : iter->value) {
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, " Merging ", targetRelationship, " and ", sourceRelationship, ":");
targetRelationship.merge(
sourceRelationship,
[&] (Relationship newRelationship) {
dataLogLnIf(DFGIntegerRangeOptimizationPhaseInternal::verbose, " Got ", newRelationship);
if (newRelationship.right()->isInt32Constant()) {
// We can produce a relationship with a constant equivalent to
// an existing relationship yet of a different form. For example:
//
// @a == @b(42) + 0
// @a == @c(41) + 1
//
// We do not want to perpetually switch between those two forms,
// so we always prefer the one already at head.
for (Relationship& existingRelationshipAtHead : constantRelationshipsAtHead) {
if (existingRelationshipAtHead.isEquivalentTo(newRelationship)) {
newRelationship = existingRelationshipAtHead;
break;
}
}
}
// We need to filter() to avoid exponential explosion of identical
// relationships. We do this here to avoid making setOneSide() do
// more work, since we expect setOneSide() will be called more
// frequently. Here's an example. At some point someone might start
// with two relationships like @a > @b - C and @a < @b + D. Then
// someone does a setRelationship() passing something that turns
// both of these into @a == @b. Now we have @a == @b duplicated.
// Let's say that this duplicate @a == @b ends up at the head of a
// loop. If we didn't have this rule, then the loop would propagate
// duplicate @a == @b's onto the existing duplicate @a == @b's.
// There would be four pairs of @a == @b, each of which would
// create a new @a == @b. Now we'd have four of these duplicates
// and the next time around we'd have 8, then 16, etc. We avoid
// this here by doing this filtration. That might be a bit of
// overkill, since it's probably just the identical duplicate
// relationship case we want' to avoid. But, I'll keep this until
// we have evidence that this is a performance problem. Remember -
// we are already dealing with a list that is pruned down to
// relationships with identical left operand. It shouldn't be a
// large list.
bool found = false;
for (Relationship& existingRelationship : mergedRelationships) {
if (existingRelationship.sameNodesAs(newRelationship)) {
Relationship filtered =
existingRelationship.filter(newRelationship);
if (filtered) {
existingRelationship = filtered;
found = true;
break;
}
}
}
if (!found)
mergedRelationships.append(newRelationship);
});
}
}
std::sort(mergedRelationships.begin(), mergedRelationships.end());
if (entry.value == mergedRelationships)
continue;
entry.value = mergedRelationships;
changed = true;
}
for (NodeFlowProjection node : toRemove)
m_relationshipsAtHead[target].remove(node);
return changed;
}
Vector<Relationship> sortedRelationships(const RelationshipMap& relationships)
{
Vector<Relationship> result;
for (auto& entry : relationships)
result.appendVector(entry.value);
std::sort(result.begin(), result.end());
return result;
}
Vector<Relationship> sortedRelationships()
{
return sortedRelationships(m_relationships);
}
Node* m_zero;
RelationshipMap m_relationships;
BlockSet m_seenBlocks;
BlockMap<RelationshipMap> m_relationshipsAtHead;
InsertionSet m_insertionSet;
unsigned m_iterations { 0 };
};
} // anonymous namespace
bool performIntegerRangeOptimization(Graph& graph)
{
return runPhase<IntegerRangeOptimizationPhase>(graph);
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|