1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
/*
* Copyright (C) 2011-2023 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGOSREntry.h"
#if ENABLE(DFG_JIT)
#include "BytecodeStructs.h"
#include "CallFrame.h"
#include "CodeBlock.h"
#include "DFGJITCode.h"
#include "DFGNode.h"
#include "JSCJSValueInlines.h"
#include "RegisterAtOffsetList.h"
#include "VMInlines.h"
#include <wtf/CommaPrinter.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace JSC { namespace DFG {
void OSREntryData::dumpInContext(PrintStream& out, DumpContext* context) const
{
out.print(m_bytecodeIndex, ", machine code = ", RawPointer(m_machineCode.taggedPtr()));
out.print(", stack rules = [");
auto printOperand = [&] (VirtualRegister reg) {
out.print(inContext(m_expectedValues.operand(reg), context), " (");
VirtualRegister toReg;
bool overwritten = false;
for (OSREntryReshuffling reshuffling : m_reshufflings) {
if (reg == VirtualRegister(reshuffling.fromOffset)) {
toReg = VirtualRegister(reshuffling.toOffset);
break;
}
if (reg == VirtualRegister(reshuffling.toOffset))
overwritten = true;
}
if (!overwritten && !toReg.isValid())
toReg = reg;
if (toReg.isValid()) {
if (toReg.isLocal() && !m_machineStackUsed.get(toReg.toLocal()))
out.print("ignored");
else
out.print("maps to ", toReg);
} else
out.print("overwritten");
if (reg.isLocal() && m_localsForcedDouble.get(reg.toLocal()))
out.print(", forced double");
if (reg.isLocal() && m_localsForcedAnyInt.get(reg.toLocal()))
out.print(", forced machine int");
out.print(")");
};
CommaPrinter comma;
for (size_t argumentIndex = m_expectedValues.numberOfArguments(); argumentIndex--;) {
out.print(comma, "arg"_s, argumentIndex, ":"_s);
printOperand(virtualRegisterForArgumentIncludingThis(argumentIndex));
}
for (size_t localIndex = 0; localIndex < m_expectedValues.numberOfLocals(); ++localIndex) {
out.print(comma, "loc"_s, localIndex, ":"_s);
printOperand(virtualRegisterForLocal(localIndex));
}
out.print("], machine stack used = "_s, m_machineStackUsed);
}
void OSREntryData::dump(PrintStream& out) const
{
dumpInContext(out, nullptr);
}
SUPPRESS_ASAN
void* prepareOSREntry(VM& vm, CallFrame* callFrame, CodeBlock* codeBlock, BytecodeIndex bytecodeIndex)
{
ASSERT(JSC::JITCode::isOptimizingJIT(codeBlock->jitType()));
ASSERT(codeBlock->alternative());
ASSERT(codeBlock->alternative()->jitType() == JITType::BaselineJIT);
ASSERT(codeBlock->jitCode()->dfgCommon()->isStillValid());
ASSERT(!codeBlock->isJettisoned());
if (!Options::useOSREntryToDFG())
return nullptr;
dataLogLnIf(Options::verboseOSR(),
"DFG OSR in ", *codeBlock->alternative(), " -> ", *codeBlock,
" from ", bytecodeIndex);
sanitizeStackForVM(vm);
if (bytecodeIndex)
codeBlock->ownerExecutable()->setDidTryToEnterInLoop(true);
if (codeBlock->jitType() != JITType::DFGJIT) {
RELEASE_ASSERT(codeBlock->jitType() == JITType::FTLJIT);
// When will this happen? We could have:
//
// - An exit from the FTL JIT into the baseline JIT followed by an attempt
// to reenter. We're fine with allowing this to fail. If it happens
// enough we'll just reoptimize. It basically means that the OSR exit cost
// us dearly and so reoptimizing is the right thing to do.
//
// - We have recursive code with hot loops. Consider that foo has a hot loop
// that calls itself. We have two foo's on the stack, lets call them foo1
// and foo2, with foo1 having called foo2 from foo's hot loop. foo2 gets
// optimized all the way into the FTL. Then it returns into foo1, and then
// foo1 wants to get optimized. It might reach this conclusion from its
// hot loop and attempt to OSR enter. And we'll tell it that it can't. It
// might be worth addressing this case, but I just think this case will
// be super rare. For now, if it does happen, it'll cause some compilation
// thrashing.
dataLogLnIf(Options::verboseOSR(), " OSR failed because the target code block is not DFG.");
return nullptr;
}
JITCode* jitCode = codeBlock->jitCode()->dfg();
OSREntryData* entry = jitCode->osrEntryDataForBytecodeIndex(bytecodeIndex);
if (!entry) {
dataLogLnIf(Options::verboseOSR(), " OSR failed because the entrypoint was optimized out.");
return nullptr;
}
ASSERT(entry->m_bytecodeIndex == bytecodeIndex);
// The code below checks if it is safe to perform OSR entry. It may find
// that it is unsafe to do so, for any number of reasons, which are documented
// below. If the code decides not to OSR then it returns 0, and it's the caller's
// responsibility to patch up the state in such a way as to ensure that it's
// both safe and efficient to continue executing baseline code for now. This
// should almost certainly include calling either codeBlock->optimizeAfterWarmUp()
// or codeBlock->dontOptimizeAnytimeSoon().
// 1) Verify predictions. If the predictions are inconsistent with the actual
// values, then OSR entry is not possible at this time. It's tempting to
// assume that we could somehow avoid this case. We can certainly avoid it
// for first-time loop OSR - that is, OSR into a CodeBlock that we have just
// compiled. Then we are almost guaranteed that all of the predictions will
// check out. It would be pretty easy to make that a hard guarantee. But
// then there would still be the case where two call frames with the same
// baseline CodeBlock are on the stack at the same time. The top one
// triggers compilation and OSR. In that case, we may no longer have
// accurate value profiles for the one deeper in the stack. Hence, when we
// pop into the CodeBlock that is deeper on the stack, we might OSR and
// realize that the predictions are wrong. Probably, in most cases, this is
// just an anomaly in the sense that the older CodeBlock simply went off
// into a less-likely path. So, the wisest course of action is to simply not
// OSR at this time.
for (size_t argument = 0; argument < entry->m_expectedValues.numberOfArguments(); ++argument) {
JSValue value;
if (!argument)
value = callFrame->thisValue();
else
value = callFrame->argument(argument - 1);
if (!entry->m_expectedValues.argument(argument).validateOSREntryValue(value, FlushedJSValue)) {
dataLogLnIf(Options::verboseOSR(),
" OSR failed because argument ", argument, " is ", value,
", expected ", entry->m_expectedValues.argument(argument));
return nullptr;
}
}
for (size_t local = 0; local < entry->m_expectedValues.numberOfLocals(); ++local) {
int localOffset = virtualRegisterForLocal(local).offset();
JSValue value = callFrame->registers()[localOffset].asanUnsafeJSValue();
FlushFormat format = FlushedJSValue;
if (entry->m_localsForcedAnyInt.get(local)) {
if (!value.isAnyInt()) {
dataLogLnIf(Options::verboseOSR(),
" OSR failed because variable ", localOffset, " is ",
value, ", expected ",
"machine int.");
return nullptr;
}
value = jsDoubleNumber(value.asAnyInt());
format = FlushedInt52;
}
if (entry->m_localsForcedDouble.get(local)) {
if (!value.isNumber()) {
dataLogLnIf(Options::verboseOSR(),
" OSR failed because variable ", localOffset, " is ",
value, ", expected number.");
return nullptr;
}
value = jsDoubleNumber(value.asNumber());
format = FlushedDouble;
}
if (!entry->m_expectedValues.local(local).validateOSREntryValue(value, format)) {
dataLogLnIf(Options::verboseOSR(),
" OSR failed because variable ", VirtualRegister(localOffset), " is ",
value, ", expected ",
entry->m_expectedValues.local(local), ".");
return nullptr;
}
}
// 2) Check the stack height. The DFG JIT may require a taller stack than the
// baseline JIT, in some cases. If we can't grow the stack, then don't do
// OSR right now. That's the only option we have unless we want basic block
// boundaries to start throwing RangeErrors. Although that would be possible,
// it seems silly: you'd be diverting the program to error handling when it
// would have otherwise just kept running albeit less quickly.
unsigned frameSizeForCheck = jitCode->common.requiredRegisterCountForExecutionAndExit();
if (UNLIKELY(!vm.ensureStackCapacityFor(&callFrame->registers()[virtualRegisterForLocal(frameSizeForCheck - 1).offset()]))) {
dataLogLnIf(Options::verboseOSR(), " OSR failed because stack growth failed.");
return nullptr;
}
dataLogLnIf(Options::verboseOSR(), " OSR should succeed.");
// At this point we're committed to entering. We will do some work to set things up,
// but we also rely on our caller recognizing that when we return a non-null pointer,
// that means that we're already past the point of no return and we must succeed at
// entering.
// 3) Set up the data in the scratch buffer and perform data format conversions.
unsigned frameSize = jitCode->common.frameRegisterCount;
unsigned baselineFrameSize = entry->m_expectedValues.numberOfLocals();
unsigned maxFrameSize = std::max(frameSize, baselineFrameSize);
Register* scratch = std::bit_cast<Register*>(vm.scratchBufferForSize(sizeof(Register) * (2 + CallFrame::headerSizeInRegisters + maxFrameSize))->dataBuffer());
*std::bit_cast<size_t*>(scratch + 0) = frameSize;
void* targetPC = entry->m_machineCode.taggedPtr();
RELEASE_ASSERT(codeBlock->jitCode()->contains(entry->m_machineCode.untaggedPtr()));
dataLogLnIf(Options::verboseOSR(), " OSR using target PC ", RawPointer(targetPC));
RELEASE_ASSERT(targetPC);
*std::bit_cast<void**>(scratch + 1) = tagCodePtrWithStackPointerForJITCall(untagCodePtr<OSREntryPtrTag>(targetPC), callFrame);
Register* pivot = scratch + 2 + CallFrame::headerSizeInRegisters;
for (int index = -CallFrame::headerSizeInRegisters; index < static_cast<int>(baselineFrameSize); ++index) {
VirtualRegister reg(-1 - index);
if (reg.isLocal()) {
if (entry->m_localsForcedDouble.get(reg.toLocal())) {
*std::bit_cast<double*>(pivot + index) = callFrame->registers()[reg.offset()].asanUnsafeJSValue().asNumber();
continue;
}
if (entry->m_localsForcedAnyInt.get(reg.toLocal())) {
*std::bit_cast<int64_t*>(pivot + index) = callFrame->registers()[reg.offset()].asanUnsafeJSValue().asAnyInt() << JSValue::int52ShiftAmount;
continue;
}
}
pivot[index] = callFrame->registers()[reg.offset()].asanUnsafeJSValue();
}
// 4) Reshuffle those registers that need reshuffling.
Vector<JSValue> temporaryLocals(entry->m_reshufflings.size());
for (unsigned i = entry->m_reshufflings.size(); i--;)
temporaryLocals[i] = pivot[VirtualRegister(entry->m_reshufflings[i].fromOffset).toLocal()].asanUnsafeJSValue();
for (unsigned i = entry->m_reshufflings.size(); i--;)
pivot[VirtualRegister(entry->m_reshufflings[i].toOffset).toLocal()] = temporaryLocals[i];
// 5) Clear those parts of the call frame that the DFG ain't using. This helps GC on
// some programs by eliminating some stale pointer pathologies.
for (unsigned i = frameSize; i--;) {
if (entry->m_machineStackUsed.get(i))
continue;
pivot[i] = JSValue();
}
// 6) Copy our callee saves to buffer.
#if NUMBER_OF_CALLEE_SAVES_REGISTERS > 0
const RegisterAtOffsetList* registerSaveLocations = codeBlock->jitCode()->calleeSaveRegisters();
RegisterAtOffsetList* allCalleeSaves = RegisterSetBuilder::vmCalleeSaveRegisterOffsets();
auto dontSaveRegisters = RegisterSetBuilder::stackRegisters();
unsigned registerCount = registerSaveLocations->registerCount();
VMEntryRecord* record = vmEntryRecord(vm.topEntryFrame);
for (unsigned i = 0; i < registerCount; i++) {
RegisterAtOffset currentEntry = registerSaveLocations->at(i);
ASSERT(dontSaveRegisters.contains(currentEntry.reg(), IgnoreVectors) == dontSaveRegisters.contains(currentEntry.reg(), Width128));
if (dontSaveRegisters.contains(currentEntry.reg(), IgnoreVectors))
continue;
RELEASE_ASSERT(currentEntry.reg().isGPR());
RegisterAtOffset* calleeSavesEntry = allCalleeSaves->find(currentEntry.reg());
if constexpr (CallerFrameAndPC::sizeInRegisters == 2)
*(std::bit_cast<intptr_t*>(pivot - 1) - currentEntry.offsetAsIndex()) = record->calleeSaveRegistersBuffer[calleeSavesEntry->offsetAsIndex()];
else {
// We need to adjust 4-bytes on 32-bits, otherwise we will clobber some parts of
// pivot[-1] when currentEntry.offsetAsIndex() returns -1. This region contains
// CallerFrameAndPC and if it is cloberred, we will have a corrupted stack.
// Also, we need to store callee-save registers swapped in pairs on scratch buffer,
// otherwise they will be swapped when copied to call frame during OSR Entry code.
// Here is how we would like to have the buffer configured:
//
// pivot[-4] = ArgumentCountIncludingThis
// pivot[-3] = Callee
// pivot[-2] = CodeBlock
// pivot[-1] = CallerFrameAndReturnPC
// pivot[0] = csr1/csr0
// pivot[1] = csr3/csr2
// ...
ASSERT(sizeof(intptr_t) == 4);
ASSERT(CallerFrameAndPC::sizeInRegisters == 1);
ASSERT(currentEntry.offsetAsIndex() < 0);
int offsetAsIndex = currentEntry.offsetAsIndex();
int properIndex = offsetAsIndex % 2 ? offsetAsIndex - 1 : offsetAsIndex + 1;
*(std::bit_cast<intptr_t*>(pivot - 1) + 1 - properIndex) = record->calleeSaveRegistersBuffer[calleeSavesEntry->offsetAsIndex()];
}
}
#endif
// 7) Fix the call frame to have the right code block.
*std::bit_cast<CodeBlock**>(pivot - (CallFrameSlot::codeBlock + 1)) = codeBlock;
dataLogLnIf(Options::verboseOSR(), " OSR returning data buffer ", RawPointer(scratch));
return scratch;
}
CodePtr<ExceptionHandlerPtrTag> prepareCatchOSREntry(VM& vm, CallFrame* callFrame, CodeBlock* baselineCodeBlock, CodeBlock* optimizedCodeBlock, BytecodeIndex bytecodeIndex)
{
ASSERT(optimizedCodeBlock->jitType() == JITType::DFGJIT || optimizedCodeBlock->jitType() == JITType::FTLJIT);
ASSERT(optimizedCodeBlock->jitCode()->dfgCommon()->isStillValid());
ASSERT(!optimizedCodeBlock->isJettisoned());
if (!Options::useOSREntryToDFG() && optimizedCodeBlock->jitCode()->jitType() == JITType::DFGJIT)
return nullptr;
if (!Options::useOSREntryToFTL() && optimizedCodeBlock->jitCode()->jitType() == JITType::FTLJIT)
return nullptr;
CommonData* dfgCommon = optimizedCodeBlock->jitCode()->dfgCommon();
RELEASE_ASSERT(dfgCommon);
DFG::CatchEntrypointData* catchEntrypoint = dfgCommon->catchOSREntryDataForBytecodeIndex(bytecodeIndex);
if (!catchEntrypoint) {
// This can be null under some circumstances. The most common is that we didn't
// compile this op_catch as an entrypoint since it had never executed when starting
// the compilation.
return nullptr;
}
// We're only allowed to OSR enter if we've proven we have compatible argument types.
for (unsigned argument = 0; argument < catchEntrypoint->argumentFormats.size(); ++argument) {
JSValue value = callFrame->uncheckedR(virtualRegisterForArgumentIncludingThis(argument)).jsValue();
switch (catchEntrypoint->argumentFormats[argument]) {
case DFG::FlushedInt32:
if (!value.isInt32())
return nullptr;
break;
case DFG::FlushedCell:
if (!value.isCell())
return nullptr;
break;
case DFG::FlushedBoolean:
if (!value.isBoolean())
return nullptr;
break;
case DFG::DeadFlush:
// This means the argument is not alive. Therefore, it's allowed to be any type.
break;
case DFG::FlushedJSValue:
// An argument is trivially a JSValue.
break;
default:
RELEASE_ASSERT_NOT_REACHED();
}
}
unsigned frameSizeForCheck = dfgCommon->requiredRegisterCountForExecutionAndExit();
if (UNLIKELY(!vm.ensureStackCapacityFor(&callFrame->registers()[virtualRegisterForLocal(frameSizeForCheck).offset()])))
return nullptr;
auto instruction = baselineCodeBlock->instructions().at(callFrame->bytecodeIndex());
ASSERT(instruction->is<OpCatch>());
ValueProfileAndVirtualRegisterBuffer* buffer = instruction->as<OpCatch>().metadata(baselineCodeBlock).m_buffer;
JSValue* dataBuffer = reinterpret_cast<JSValue*>(dfgCommon->catchOSREntryBuffer->dataBuffer());
unsigned index = 0;
buffer->forEach([&] (ValueProfileAndVirtualRegister& profile) {
if (!VirtualRegister(profile.m_operand).isLocal())
return;
dataBuffer[index] = callFrame->uncheckedR(profile.m_operand).jsValue();
++index;
});
// The active length of catchOSREntryBuffer will be zeroed by ClearCatchLocals node.
dfgCommon->catchOSREntryBuffer->setActiveLength(sizeof(JSValue) * index);
vm.requestEntryScopeService(VM::EntryScopeService::ClearScratchBuffers);
// At this point, we're committed to triggering an OSR entry immediately after we return. Hence, it is safe to modify stack here.
callFrame->setCodeBlock(optimizedCodeBlock);
return catchEntrypoint->machineCode;
}
} } // namespace JSC::DFG
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
#endif // ENABLE(DFG_JIT)
|