1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
|
/*
* Copyright (C) 2013-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGPlan.h"
#if ENABLE(DFG_JIT)
#include "DFGArgumentsEliminationPhase.h"
#include "DFGBackwardsPropagationPhase.h"
#include "DFGByteCodeParser.h"
#include "DFGCFAPhase.h"
#include "DFGCFGSimplificationPhase.h"
#include "DFGCPSRethreadingPhase.h"
#include "DFGCSEPhase.h"
#include "DFGCleanUpPhase.h"
#include "DFGConstantFoldingPhase.h"
#include "DFGConstantHoistingPhase.h"
#include "DFGCriticalEdgeBreakingPhase.h"
#include "DFGDCEPhase.h"
#include "DFGFailedFinalizer.h"
#include "DFGFixupPhase.h"
#include "DFGGraphSafepoint.h"
#include "DFGIntegerCheckCombiningPhase.h"
#include "DFGIntegerRangeOptimizationPhase.h"
#include "DFGInvalidationPointInjectionPhase.h"
#include "DFGJITCompiler.h"
#include "DFGLICMPhase.h"
#include "DFGLiveCatchVariablePreservationPhase.h"
#include "DFGLivenessAnalysisPhase.h"
#include "DFGLoopPreHeaderCreationPhase.h"
#include "DFGLoopUnrollingPhase.h"
#include "DFGMovHintRemovalPhase.h"
#include "DFGOSRAvailabilityAnalysisPhase.h"
#include "DFGOSREntrypointCreationPhase.h"
#include "DFGObjectAllocationSinkingPhase.h"
#include "DFGPhantomInsertionPhase.h"
#include "DFGPredictionInjectionPhase.h"
#include "DFGPredictionPropagationPhase.h"
#include "DFGPutStackSinkingPhase.h"
#include "DFGSSAConversionPhase.h"
#include "DFGSSALoweringPhase.h"
#include "DFGSpeculativeJIT.h"
#include "DFGStackLayoutPhase.h"
#include "DFGStaticExecutionCountEstimationPhase.h"
#include "DFGStoreBarrierClusteringPhase.h"
#include "DFGStoreBarrierInsertionPhase.h"
#include "DFGStrengthReductionPhase.h"
#include "DFGThunks.h"
#include "DFGTierUpCheckInjectionPhase.h"
#include "DFGTypeCheckHoistingPhase.h"
#include "DFGUnificationPhase.h"
#include "DFGValidate.h"
#include "DFGValidateUnlinked.h"
#include "DFGValueRepReductionPhase.h"
#include "DFGVarargsForwardingPhase.h"
#include "DFGVirtualRegisterAllocationPhase.h"
#include "JSCJSValueInlines.h"
#include "OperandsInlines.h"
#include "ProfilerDatabase.h"
#include "StructureID.h"
#include "TrackedReferences.h"
#include "VMInlines.h"
#if ENABLE(FTL_JIT)
#include "FTLCapabilities.h"
#include "FTLCompile.h"
#include "FTLFail.h"
#include "FTLLink.h"
#include "FTLLowerDFGToB3.h"
#include "FTLState.h"
#endif
namespace JSC { namespace DFG {
namespace {
void dumpAndVerifyGraph(Graph& graph, const char* text, bool forceDump = false)
{
GraphDumpMode modeForFinalValidate = DumpGraph;
if (verboseCompilationEnabled(graph.m_plan.mode()) || forceDump) {
dataLog(text, "\n", graph);
modeForFinalValidate = DontDumpGraph;
}
if (validationEnabled())
validate(graph, modeForFinalValidate);
}
Profiler::CompilationKind profilerCompilationKindForMode(JITCompilationMode mode)
{
switch (mode) {
case JITCompilationMode::InvalidCompilation:
case JITCompilationMode::Baseline:
RELEASE_ASSERT_NOT_REACHED();
return Profiler::DFG;
case JITCompilationMode::DFG:
return Profiler::DFG;
case JITCompilationMode::UnlinkedDFG:
return Profiler::UnlinkedDFG;
case JITCompilationMode::FTL:
return Profiler::FTL;
case JITCompilationMode::FTLForOSREntry:
return Profiler::FTLForOSREntry;
}
RELEASE_ASSERT_NOT_REACHED();
return Profiler::DFG;
}
} // anonymous namespace
Plan::Plan(CodeBlock* passedCodeBlock, CodeBlock* profiledDFGCodeBlock,
JITCompilationMode mode, BytecodeIndex osrEntryBytecodeIndex,
Operands<std::optional<JSValue>>&& mustHandleValues)
: Base(mode, passedCodeBlock)
, m_profiledDFGCodeBlock(profiledDFGCodeBlock)
, m_mustHandleValues(WTFMove(mustHandleValues))
, m_osrEntryBytecodeIndex(osrEntryBytecodeIndex)
, m_compilation(UNLIKELY(m_vm->m_perBytecodeProfiler) ? adoptRef(new Profiler::Compilation(m_vm->m_perBytecodeProfiler->ensureBytecodesFor(m_codeBlock), profilerCompilationKindForMode(mode))) : nullptr)
, m_inlineCallFrames(adoptRef(new InlineCallFrameSet()))
, m_identifiers(m_codeBlock)
, m_transitions(m_codeBlock)
{
RELEASE_ASSERT(m_codeBlock->alternative()->jitCode());
m_inlineCallFrames->disableThreadingChecks();
}
Plan::~Plan() = default;
size_t Plan::codeSize() const
{
if (!m_finalizer)
return 0;
return m_finalizer->codeSize();
}
void Plan::finalizeInGC()
{
ASSERT(m_vm);
if (m_recordedStatuses)
m_recordedStatuses->finalizeWithoutDeleting(*m_vm);
}
void Plan::notifyReady()
{
Base::notifyReady();
m_callback->compilationDidBecomeReadyAsynchronously(m_codeBlock, m_profiledDFGCodeBlock);
}
void Plan::cancel()
{
Base::cancel();
m_profiledDFGCodeBlock = nullptr;
m_mustHandleValues.clear();
m_compilation = nullptr;
m_finalizer = nullptr;
m_inlineCallFrames = nullptr;
m_watchpoints = DesiredWatchpoints();
m_identifiers = DesiredIdentifiers();
m_weakReferences = DesiredWeakReferences();
m_transitions = DesiredTransitions();
m_callback = nullptr;
}
Plan::CompilationPath Plan::compileInThreadImpl()
{
{
CompilerTimingScope timingScope("DFG"_s, "initialize"_s);
m_recordedStatuses = makeUnique<RecordedStatuses>();
cleanMustHandleValuesIfNecessary();
}
dataLogLnIf(verboseCompilationEnabled(m_mode) && m_osrEntryBytecodeIndex,
"\n",
"Compiler must handle OSR entry from ", m_osrEntryBytecodeIndex, " with values: ", m_mustHandleValues, "\n");
Graph dfg(*m_vm, *this);
{
CompilerTimingScope timingScope("DFG"_s, "bytecode parser"_s);
if (!parse(dfg))
return CancelPath;
}
bool changed = false;
#define RUN_PHASE(phase) \
do { \
if (Options::safepointBeforeEachPhase()) { \
Safepoint::Result safepointResult; \
{ \
GraphSafepoint safepoint(dfg, safepointResult); \
} \
if (safepointResult.didGetCancelled()) \
return CancelPath; \
} \
dfg.nextPhase(); \
changed |= phase(dfg); \
} while (false); \
// By this point the DFG bytecode parser will have potentially mutated various tables
// in the CodeBlock. This is a good time to perform an early shrink, which is more
// powerful than a late one. It's safe to do so because we haven't generated any code
// that references any of the tables directly, yet.
{
ConcurrentJSLocker locker(m_codeBlock->m_lock);
m_codeBlock->shrinkToFit(locker, CodeBlock::ShrinkMode::EarlyShrink);
}
if (validationEnabled())
validate(dfg);
dataLogIf(Options::dumpGraphAfterParsing(), "Graph after parsing:\n", dfg);
RUN_PHASE(performCPSRethreading);
RUN_PHASE(performUnification);
RUN_PHASE(performPredictionInjection);
RUN_PHASE(performStaticExecutionCountEstimation);
if (m_mode == JITCompilationMode::FTLForOSREntry) {
bool result = performOSREntrypointCreation(dfg);
if (!result) {
m_finalizer = makeUnique<FailedFinalizer>(*this);
return FailPath;
}
RUN_PHASE(performCPSRethreading);
}
if (validationEnabled())
validate(dfg);
RUN_PHASE(performPredictionPropagation);
RUN_PHASE(performFixup);
RUN_PHASE(performInvalidationPointInjection);
RUN_PHASE(performTypeCheckHoisting);
dfg.m_fixpointState = FixpointNotConverged;
// For now we're back to avoiding a fixpoint. Note that we've ping-ponged on this decision
// many times. For maximum throughput, it's best to fixpoint. But the throughput benefit is
// small and not likely to show up in FTL anyway. On the other hand, not fixpointing means
// that the compiler compiles more quickly. We want the third tier to compile quickly, which
// not fixpointing accomplishes; and the fourth tier shouldn't need a fixpoint.
if (validationEnabled())
validate(dfg);
RUN_PHASE(performBackwardsPropagation);
RUN_PHASE(performStrengthReduction);
RUN_PHASE(performCPSRethreading);
RUN_PHASE(performCFA);
RUN_PHASE(performConstantFolding);
changed = false;
RUN_PHASE(performCFGSimplification);
RUN_PHASE(performLocalCSE);
if (validationEnabled())
validate(dfg);
RUN_PHASE(performCPSRethreading);
if (!isFTL()) {
// Only run this if we're not FTLing, because currently for a LoadVarargs that is forwardable and
// in a non-varargs inlined call frame, this will generate ForwardVarargs while the FTL
// ArgumentsEliminationPhase will create a sequence of GetStack+PutStacks. The GetStack+PutStack
// sequence then gets sunk, eliminating anything that looks like an escape for subsequent phases,
// while the ForwardVarargs doesn't get simplified until later (or not at all) and looks like an
// escape for all of the arguments. This then disables object allocation sinking.
//
// So, for now, we just disable this phase for the FTL.
//
// If we wanted to enable it, we'd have to do any of the following:
// - Enable ForwardVarargs->GetStack+PutStack strength reduction, and have that run before
// PutStack sinking and object allocation sinking.
// - Make VarargsForwarding emit a GetLocal+SetLocal sequence, that we can later turn into
// GetStack+PutStack.
//
// But, it's not super valuable to enable those optimizations, since the FTL
// ArgumentsEliminationPhase does everything that this phase does, and it doesn't introduce this
// pathology.
RUN_PHASE(performVarargsForwarding); // Do this after CFG simplification and CPS rethreading.
}
if (changed) {
RUN_PHASE(performCFA);
RUN_PHASE(performConstantFolding);
RUN_PHASE(performCFGSimplification);
}
// If we're doing validation, then run some analyses, to give them an opportunity
// to self-validate. Now is as good a time as any to do this.
if (validationEnabled()) {
dfg.ensureCPSDominators();
dfg.ensureCPSNaturalLoops();
}
switch (m_mode) {
case JITCompilationMode::DFG:
case JITCompilationMode::UnlinkedDFG: {
dfg.m_fixpointState = FixpointConverged;
RUN_PHASE(performTierUpCheckInjection);
RUN_PHASE(performFastStoreBarrierInsertion);
RUN_PHASE(performStoreBarrierClustering);
RUN_PHASE(performCleanUp);
RUN_PHASE(performCPSRethreading);
RUN_PHASE(performDCE);
RUN_PHASE(performPhantomInsertion);
RUN_PHASE(performStackLayout);
RUN_PHASE(performVirtualRegisterAllocation);
if (m_mode == JITCompilationMode::UnlinkedDFG) {
if (DFG::canCompileUnlinked(dfg) == DFG::CannotCompile) {
m_finalizer = makeUnique<FailedFinalizer>(*this);
return FailPath;
}
}
dumpAndVerifyGraph(dfg, "Graph after optimization:");
{
CompilerTimingScope timingScope("DFG"_s, "machine code generation"_s);
SpeculativeJIT speculativeJIT(dfg);
if (m_codeBlock->codeType() == FunctionCode)
speculativeJIT.compileFunction();
else
speculativeJIT.compile();
}
if (m_finalizer) {
if (auto jitCode = m_finalizer->jitCode())
finalizeInThread(jitCode.releaseNonNull());
}
return DFGPath;
}
case JITCompilationMode::FTL:
case JITCompilationMode::FTLForOSREntry: {
#if ENABLE(FTL_JIT)
if (FTL::canCompile(dfg) == FTL::CannotCompile) {
m_finalizer = makeUnique<FailedFinalizer>(*this);
return FailPath;
}
if (Options::useLoopUnrolling())
RUN_PHASE(performLoopUnrolling);
RUN_PHASE(performCleanUp); // Reduce the graph size a bit.
RUN_PHASE(performCriticalEdgeBreaking);
if (Options::createPreHeaders())
RUN_PHASE(performLoopPreHeaderCreation);
RUN_PHASE(performCPSRethreading);
RUN_PHASE(performSSAConversion);
RUN_PHASE(performSSALowering);
// Ideally, these would be run to fixpoint with the object allocation sinking phase.
if (Options::usePutStackSinking())
RUN_PHASE(performPutStackSinking);
RUN_PHASE(performArgumentsElimination);
if (Options::usePutStackSinking())
RUN_PHASE(performPutStackSinking);
RUN_PHASE(performConstantHoisting);
RUN_PHASE(performGlobalCSE);
RUN_PHASE(performGraphPackingAndLivenessAnalysis);
RUN_PHASE(performCFA);
RUN_PHASE(performConstantFolding);
RUN_PHASE(performCFGSimplification);
RUN_PHASE(performCleanUp); // Reduce the graph size a lot.
changed = false;
RUN_PHASE(performStrengthReduction);
if (Options::useObjectAllocationSinking()) {
RUN_PHASE(performCriticalEdgeBreaking);
RUN_PHASE(performObjectAllocationSinking);
}
if (Options::useValueRepElimination()) {
RUN_PHASE(performValueRepReduction);
RUN_PHASE(performStrengthReduction);
}
if (changed) {
// State-at-tail and state-at-head will be invalid if we did strength reduction since
// it might increase live ranges.
RUN_PHASE(performGraphPackingAndLivenessAnalysis);
RUN_PHASE(performCFA);
RUN_PHASE(performConstantFolding);
RUN_PHASE(performCFGSimplification);
}
// Currently, this relies on pre-headers still being valid. That precludes running CFG
// simplification before it, unless we re-created the pre-headers. There wouldn't be anything
// wrong with running LICM earlier, if we wanted to put other CFG transforms above this point.
// Alternatively, we could run loop pre-header creation after SSA conversion - but if we did that
// then we'd need to do some simple SSA fix-up.
RUN_PHASE(performGraphPackingAndLivenessAnalysis);
RUN_PHASE(performCFA);
RUN_PHASE(performLICM);
// FIXME: Currently: IntegerRangeOptimization *must* be run after LICM.
//
// IntegerRangeOptimization makes changes on nodes based on preceding blocks
// and nodes. LICM moves nodes which can invalidates assumptions used
// by IntegerRangeOptimization.
//
// Ideally, the dependencies should be explicit. See https://bugs.webkit.org/show_bug.cgi?id=157534.
RUN_PHASE(performGraphPackingAndLivenessAnalysis);
RUN_PHASE(performIntegerRangeOptimization);
RUN_PHASE(performCleanUp);
RUN_PHASE(performIntegerCheckCombining);
RUN_PHASE(performGlobalCSE);
// At this point we're not allowed to do any further code motion because our reasoning
// about code motion assumes that it's OK to insert GC points in random places.
dfg.m_fixpointState = FixpointConverged;
RUN_PHASE(performGraphPackingAndLivenessAnalysis);
RUN_PHASE(performCFA);
RUN_PHASE(performGlobalStoreBarrierInsertion);
RUN_PHASE(performStoreBarrierClustering);
// MovHint removal happens based on the assumption that we no longer inserts random new nodes having new OSR exits.
// After this phase, you cannot insert a node having a new OSR exit. (If it does not cause OSR exit, or if it does
// not introduce a new OSR exit, then it is totally fine).
if (Options::useMovHintRemoval())
RUN_PHASE(performMovHintRemoval);
RUN_PHASE(performCleanUp);
RUN_PHASE(performDCE); // We rely on this to kill dead code that won't be recognized as dead by B3.
RUN_PHASE(performStackLayout);
RUN_PHASE(performGraphPackingAndLivenessAnalysis);
RUN_PHASE(performOSRAvailabilityAnalysis);
if (FTL::canCompile(dfg) == FTL::CannotCompile) {
m_finalizer = makeUnique<FailedFinalizer>(*this);
return FailPath;
}
dfg.nextPhase();
dumpAndVerifyGraph(dfg, "Graph just before FTL lowering:", shouldDumpDisassembly(m_mode));
// Flash a safepoint in case the GC wants some action.
Safepoint::Result safepointResult;
{
GraphSafepoint safepoint(dfg, safepointResult);
}
if (safepointResult.didGetCancelled())
return CancelPath;
dfg.nextPhase();
FTL::State state(dfg);
FTL::lowerDFGToB3(state);
if (UNLIKELY(computeCompileTimes()))
m_timeBeforeFTL = MonotonicTime::now();
if (UNLIKELY(Options::b3AlwaysFailsBeforeCompile())) {
FTL::fail(state);
return FTLPath;
}
FTL::compile(state, safepointResult);
if (safepointResult.didGetCancelled())
return CancelPath;
if (UNLIKELY(Options::b3AlwaysFailsBeforeLink())) {
FTL::fail(state);
return FTLPath;
}
if (state.allocationFailed) {
FTL::fail(state);
return FTLPath;
}
FTL::link(state);
if (state.allocationFailed) {
FTL::fail(state);
return FTLPath;
}
if (m_finalizer) {
if (auto jitCode = m_finalizer->jitCode())
finalizeInThread(jitCode.releaseNonNull());
}
return FTLPath;
#else
RELEASE_ASSERT_NOT_REACHED();
return FailPath;
#endif // ENABLE(FTL_JIT)
}
default:
RELEASE_ASSERT_NOT_REACHED();
return FailPath;
}
#undef RUN_PHASE
}
void Plan::finalizeInThread(Ref<JSC::JITCode> jitCode)
{
m_watchpoints.countWatchpoints(m_codeBlock, m_identifiers, jitCode->dfgCommon());
m_weakReferences.finalize();
jitCode->shrinkToFit();
if (m_recordedStatuses)
m_recordedStatuses->shrinkToFit();
}
bool Plan::isStillValidCodeBlock()
{
CodeBlock* replacement = m_codeBlock->replacement();
if (!replacement)
return false;
// FIXME: This is almost certainly not necessary. There's no way for the baseline
// code to be replaced during a compilation, except if we delete the plan, in which
// case we wouldn't be here.
// https://bugs.webkit.org/show_bug.cgi?id=132707
if (m_codeBlock->alternative() != replacement->baselineVersion())
return false;
return true;
}
bool Plan::reallyAdd(CommonData* commonData)
{
if (!m_watchpoints.areStillValidOnMainThread(*m_vm, m_identifiers))
return false;
ASSERT(m_vm->heap.isDeferred());
m_identifiers.reallyAdd(*m_vm, commonData);
m_weakReferences.reallyAdd(*m_vm, commonData);
m_transitions.reallyAdd(*m_vm, commonData);
if (!m_watchpoints.reallyAdd(m_codeBlock, m_identifiers, commonData))
return false;
commonData->recordedStatuses = WTFMove(m_recordedStatuses);
ASSERT(m_vm->heap.isDeferred());
for (auto* callLinkInfo : commonData->m_directCallLinkInfos)
callLinkInfo->validateSpeculativeRepatchOnMainThread(*m_vm);
return true;
}
CompilationResult Plan::finalize()
{
// We perform multiple stores before emitting a write-barrier. To ensure that no GC happens between store and write-barrier, we should ensure that
// GC is deferred when this function is called.
ASSERT(m_vm->heap.isDeferred());
CompilationResult result = [&] {
if (m_finalizer->isFailed()) {
CODEBLOCK_LOG_EVENT(m_codeBlock, "dfgFinalize", ("failed"));
return CompilationFailed;
}
if (!isStillValidCodeBlock()) {
CODEBLOCK_LOG_EVENT(m_codeBlock, "dfgFinalize", ("invalidated"));
return CompilationInvalidated;
}
bool result = m_finalizer->finalize();
if (!result) {
CODEBLOCK_LOG_EVENT(m_codeBlock, "dfgFinalize", ("failed"));
return CompilationFailed;
}
if (!reallyAdd(m_codeBlock->jitCode()->dfgCommon())) {
CODEBLOCK_LOG_EVENT(m_codeBlock, "dfgFinalize", ("invalidated"));
return CompilationInvalidated;
}
{
ConcurrentJSLocker locker(m_codeBlock->m_lock);
m_codeBlock->shrinkToFit(locker, CodeBlock::ShrinkMode::LateShrink);
}
// Since Plan::reallyAdd could fire watchpoints (see ArrayBufferViewWatchpointAdaptor::add),
// it is possible that the current CodeBlock is now invalidated & jettisoned.
if (m_codeBlock->isJettisoned()) {
CODEBLOCK_LOG_EVENT(m_codeBlock, "dfgFinalize", ("invalidated"));
return CompilationInvalidated;
}
if (UNLIKELY(validationEnabled())) {
TrackedReferences trackedReferences;
for (WriteBarrier<JSCell>& reference : m_codeBlock->jitCode()->dfgCommon()->m_weakReferences)
trackedReferences.add(reference.get());
for (StructureID structureID : m_codeBlock->jitCode()->dfgCommon()->m_weakStructureReferences)
trackedReferences.add(structureID.decode());
for (WriteBarrier<Unknown>& constant : m_codeBlock->constants())
trackedReferences.add(constant.get());
for (auto* inlineCallFrame : *m_inlineCallFrames) {
ASSERT(inlineCallFrame->baselineCodeBlock.get());
trackedReferences.add(inlineCallFrame->baselineCodeBlock.get());
}
// Check that any other references that we have anywhere in the JITCode are also
// tracked either strongly or weakly.
m_codeBlock->jitCode()->validateReferences(trackedReferences);
}
CODEBLOCK_LOG_EVENT(m_codeBlock, "dfgFinalize", ("succeeded"));
return CompilationSuccessful;
}();
// We will establish new references from the code block to things. So, we need a barrier.
m_vm->writeBarrier(m_codeBlock);
m_callback->compilationDidComplete(m_codeBlock, m_profiledDFGCodeBlock, result);
return result;
}
bool Plan::iterateCodeBlocksForGC(AbstractSlotVisitor& visitor, NOESCAPE const Function<void(CodeBlock*)>& func)
{
if (!Base::iterateCodeBlocksForGC(visitor, func))
return false;
// Compilation writes lots of values to a CodeBlock without performing
// an explicit barrier. So, we need to be pessimistic and assume that
// all our CodeBlocks must be visited during GC.
func(m_codeBlock->alternative());
if (m_profiledDFGCodeBlock)
func(m_profiledDFGCodeBlock);
return true;
}
bool Plan::checkLivenessAndVisitChildren(AbstractSlotVisitor& visitor)
{
if (!Base::checkLivenessAndVisitChildren(visitor))
return false;
cleanMustHandleValuesIfNecessary();
for (unsigned i = m_mustHandleValues.size(); i--;) {
std::optional<JSValue> value = m_mustHandleValues[i];
if (value)
visitor.appendUnbarriered(value.value());
}
if (m_recordedStatuses) {
m_recordedStatuses->visitAggregate(visitor);
m_recordedStatuses->markIfCheap(visitor);
}
visitor.appendUnbarriered(m_codeBlock->alternative());
visitor.appendUnbarriered(m_profiledDFGCodeBlock);
if (m_inlineCallFrames) {
for (auto* inlineCallFrame : *m_inlineCallFrames) {
ASSERT(inlineCallFrame->baselineCodeBlock.get());
visitor.appendUnbarriered(inlineCallFrame->baselineCodeBlock.get());
}
}
m_weakReferences.visitChildren(visitor);
m_transitions.visitChildren(visitor);
return true;
}
bool Plan::isKnownToBeLiveDuringGC(AbstractSlotVisitor& visitor)
{
if (safepointKeepsDependenciesLive())
return true;
if (!Base::isKnownToBeLiveDuringGC(visitor))
return false;
if (!visitor.isMarked(m_codeBlock->alternative()))
return false;
if (!!m_profiledDFGCodeBlock && !visitor.isMarked(m_profiledDFGCodeBlock))
return false;
return true;
}
bool Plan::isKnownToBeLiveAfterGC()
{
if (safepointKeepsDependenciesLive())
return true;
if (!Base::isKnownToBeLiveAfterGC())
return false;
if (!m_vm->heap.isMarked(m_codeBlock->alternative()))
return false;
if (!!m_profiledDFGCodeBlock && !m_vm->heap.isMarked(m_profiledDFGCodeBlock))
return false;
return true;
}
void Plan::cleanMustHandleValuesIfNecessary()
{
Locker locker { m_mustHandleValueCleaningLock };
if (!m_mustHandleValuesMayIncludeGarbage)
return;
m_mustHandleValuesMayIncludeGarbage = false;
if (!m_codeBlock)
return;
if (!m_mustHandleValues.numberOfLocals())
return;
CodeBlock* alternative = m_codeBlock->alternative();
FastBitVector liveness = alternative->livenessAnalysis().getLivenessInfoAtInstruction(alternative, m_osrEntryBytecodeIndex);
for (unsigned local = m_mustHandleValues.numberOfLocals(); local--;) {
if (!liveness[local])
m_mustHandleValues.local(local) = std::nullopt;
}
}
std::unique_ptr<JITData> Plan::tryFinalizeJITData(const DFG::JITCode& jitCode)
{
auto osrExitThunk = m_vm->getCTIStub(osrExitGenerationThunkGenerator).retagged<OSRExitPtrTag>();
auto exits = JITData::ExitVector::createWithSizeAndConstructorArguments(jitCode.m_osrExit.size(), osrExitThunk);
return JITData::tryCreate(*m_vm, m_codeBlock, jitCode, WTFMove(exits));
}
} } // namespace JSC::DFG
#endif // ENABLE(DFG_JIT)
|