File: DFGSafeToExecute.h

package info (click to toggle)
webkit2gtk 2.48.3-1
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 429,620 kB
  • sloc: cpp: 3,696,936; javascript: 194,444; ansic: 169,997; python: 46,499; asm: 19,276; ruby: 18,528; perl: 16,602; xml: 4,650; yacc: 2,360; sh: 2,098; java: 1,993; lex: 1,327; pascal: 366; makefile: 298
file content (809 lines) | stat: -rw-r--r-- 26,420 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
/*
 * Copyright (C) 2013-2021 Apple Inc. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE INC. OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 
 */

#pragma once

#if ENABLE(DFG_JIT)

#include "DFGGraph.h"

namespace JSC { namespace DFG {

// This phase is used to determine if a node can safely run at a new location.
// It is important to note that returning false does not mean it's definitely 
// wrong to run the node at the new location. In other words, returning false 
// does not imply moving the node would be invalid only that this phase could
// not prove it is valid. Thus, it is always ok to return false.

template<typename AbstractStateType>
class SafeToExecuteEdge {
public:
    SafeToExecuteEdge(AbstractStateType& state)
        : m_state(state)
    {
    }
    
    void operator()(Node*, Edge edge)
    {
        m_maySeeEmptyChild |= !!(m_state.forNode(edge).m_type & SpecEmpty);

        switch (edge.useKind()) {
        case UntypedUse:
        case Int32Use:
        case DoubleRepUse:
        case DoubleRepRealUse:
        case Int52RepUse:
        case NumberUse:
        case RealNumberUse:
        case BooleanUse:
        case CellUse:
        case CellOrOtherUse:
        case ObjectUse:
        case ArrayUse:
        case FunctionUse:
        case FinalObjectUse:
        case RegExpObjectUse:
        case PromiseObjectUse:
        case ProxyObjectUse:
        case GlobalProxyUse:
        case DerivedArrayUse:
        case DateObjectUse:
        case MapObjectUse:
        case SetObjectUse:
        case MapIteratorObjectUse:
        case SetIteratorObjectUse:
        case WeakMapObjectUse:
        case WeakSetObjectUse:
        case DataViewObjectUse:
        case ObjectOrOtherUse:
        case StringIdentUse:
        case StringUse:
        case StringOrOtherUse:
        case SymbolUse:
        case AnyBigIntUse:
        case HeapBigIntUse:
        case BigInt32Use:
        case StringObjectUse:
        case StringOrStringObjectUse:
        case NotStringVarUse:
        case NotSymbolUse:
        case NotCellUse:
        case NotCellNorBigIntUse:
        case OtherUse:
        case MiscUse:
        case AnyIntUse:
        case DoubleRepAnyIntUse:
        case NotDoubleUse:
        case NeitherDoubleNorHeapBigIntNorStringUse:
        case NeitherDoubleNorHeapBigIntUse:
            return;
            
        case KnownInt32Use:
            if (m_state.forNode(edge).m_type & ~SpecInt32Only)
                m_result = false;
            return;

        case KnownBooleanUse:
            if (m_state.forNode(edge).m_type & ~SpecBoolean)
                m_result = false;
            return;
            
        case KnownCellUse:
            if (m_state.forNode(edge).m_type & ~SpecCell)
                m_result = false;
            return;
            
        case KnownStringUse:
            if (m_state.forNode(edge).m_type & ~SpecString)
                m_result = false;
            return;

        case KnownPrimitiveUse:
            if (m_state.forNode(edge).m_type & ~(SpecHeapTop & ~SpecObject))
                m_result = false;
            return;

        case KnownOtherUse:
            if (m_state.forNode(edge).m_type & ~SpecOther)
                m_result = false;
            return;
            
        case LastUseKind:
            RELEASE_ASSERT_NOT_REACHED();
            break;
        }
        RELEASE_ASSERT_NOT_REACHED();
    }
    
    bool result() const { return m_result; }
    bool maySeeEmptyChild() const { return m_maySeeEmptyChild; }
private:
    AbstractStateType& m_state;
    bool m_result { true };
    bool m_maySeeEmptyChild { false };
};

// Determines if it's safe to execute a node within the given abstract state. This may
// return false conservatively. If it returns true, then you can hoist the given node
// up to the given point and expect that it will not crash. It also guarantees that the
// node will not produce a malformed JSValue or object pointer when executed in the
// given state. But this doesn't guarantee that the node will produce the result you
// wanted. For example, you may have a GetByOffset from a prototype that only makes
// semantic sense if you've also checked that some nearer prototype doesn't also have
// a property of the same name. This could still return true even if that check hadn't
// been performed in the given abstract state. That's fine though: the load can still
// safely execute before that check, so long as that check continues to guard any
// user-observable things done to the loaded value.
template<typename AbstractStateType>
bool safeToExecute(AbstractStateType& state, Graph& graph, Node* node, bool ignoreEmptyChildren = false)
{
    SafeToExecuteEdge<AbstractStateType> safeToExecuteEdge(state);
    DFG_NODE_DO_TO_CHILDREN(graph, node, safeToExecuteEdge);
    if (!safeToExecuteEdge.result())
        return false;

    if (!ignoreEmptyChildren && safeToExecuteEdge.maySeeEmptyChild()) {
        // We conservatively assume if the empty value flows into a node,
        // it might not be able to handle it (e.g, crash). In general, the bytecode generator
        // emits code in such a way that most node types don't need to worry about the empty value
        // because they will never see it. However, code motion has to consider the empty
        // value so it does not insert/move nodes to a place where they will crash. E.g, the
        // type check hoisting phase needs to insert CheckStructureOrEmpty instead of CheckStructure
        // for hoisted structure checks because it can not guarantee that a particular local is not
        // the empty value.
        switch (node->op()) {
        case CheckNotEmpty:
        case CheckStructureOrEmpty:
        case CheckArrayOrEmpty:
            break;
        default:
            return false;
        }
    }

    // NOTE: This can lie when it comes to effectful nodes, because it knows that they aren't going to
    // get hoisted anyway. Sometimes this is convenient so we can avoid branching on some internal
    // state of the node (like what some child's UseKind might be). However, nodes that are obviously
    // always effectful, we return false for, to make auditing the "return true" cases easier.

    switch (node->op()) {
    case JSConstant:
    case DoubleConstant:
    case Int52Constant:
    case LazyJSConstant:
    case Identity:
    case IdentityWithProfile:
    case GetCallee:
    case GetArgumentCountIncludingThis:
    case GetRestLength:
    case GetLocal:
    case GetStack:
    case ExitOK:
    case Phantom:
    case ArithBitNot:
    case ArithBitAnd:
    case ArithBitOr:
    case ArithBitXor:
    case ArithBitLShift:
    case ArithBitRShift:
    case BitURShift:
    case ValueToInt32:
    case UInt32ToNumber:
    case DoubleAsInt32:
    case ArithAdd:
    case ArithClz32:
    case ArithSub:
    case ArithNegate:
    case ArithMul:
    case ArithDiv:
    case ArithMod:
    case ArithAbs:
    case ArithMin:
    case ArithMax:
    case ArithPow:
    case ArithSqrt:
    case ArithFRound:
    case ArithF16Round:
    case ArithRound:
    case ArithFloor:
    case ArithCeil:
    case ArithTrunc:
    case ArithUnary:
    case CheckStructure:
    case CheckStructureOrEmpty:
    case GetExecutable:
    case CheckJSCast:
    case CheckNotJSCast:
    case CheckArray:
    case CheckArrayOrEmpty:
    case GetScope:
    case SkipScope:
    case GetGlobalObject:
    case GetGlobalThis:
    case UnwrapGlobalProxy:
    case GetClosureVar:
    case GetGlobalVar:
    case GetGlobalLexicalVariable:
    case CheckIsConstant:
    case CheckNotEmpty:
    case AssertNotEmpty:
    case CheckIdent:
    case CompareLess:
    case CompareLessEq:
    case CompareGreater:
    case CompareGreaterEq:
    case CompareBelow:
    case CompareBelowEq:
    case CompareEq:
    case CompareStrictEq:
    case CompareEqPtr:
    case SameValue:
    case CheckTypeInfoFlags:
    case ParseInt:
    case ToIntegerOrInfinity:
    case ToLength:
    case OverridesHasInstance:
    case IsEmpty:
    case IsEmptyStorage:
    case TypeOfIsUndefined:
    case TypeOfIsObject:
    case TypeOfIsFunction:
    case IsUndefinedOrNull:
    case IsBoolean:
    case IsNumber:
    case IsBigInt:
    case NumberIsInteger:
    case IsObject:
    case IsCallable:
    case IsConstructor:
    case IsCellWithType:
    case IsTypedArrayView:
    case HasStructureWithFlags:
    case TypeOf:
    case ToBoolean:
    case LogicalNot:
    case ToString:
    case FunctionToString:
    case NumberToStringWithValidRadixConstant:
    case StrCat:
    case CallStringConstructor:
    case MakeRope:
    case MakeAtomString:
    case GetFromArguments:
    case GetArgument:
    case StringFromCharCode:
    case ExtractOSREntryLocal:
    case ExtractCatchLocal:
    case AssertInBounds:
    case CheckInBounds:
    case CheckInBoundsInt52:
    case ConstantStoragePointer:
    case Check:
    case CheckVarargs:
    case ValueRep:
    case DoubleRep:
    case PurifyNaN:
    case Int52Rep:
    case BooleanToNumber:
    case FiatInt52:
    case HasIndexedProperty:
    case CheckStructureImmediate:
    case GetMyArgumentByVal:
    case GetMyArgumentByValOutOfBounds:
    case GetPrototypeOf:
    case GetRegExpObjectLastIndex:
    case MapHash:
    case NormalizeMapKey:
    case StringSlice:
    case StringSubstring:
    case ToLowerCase:
    case MapGet:
    case LoadMapValue:
    case MapStorage:
    case MapStorageOrSentinel:
    case MapIterationNext:
    case MapIterationEntry:
    case MapIterationEntryKey:
    case MapIterationEntryValue:
    case MapIteratorNext:
    case MapIteratorKey:
    case MapIteratorValue:
    case ExtractValueFromWeakMapGet:
    case WeakMapGet:
    case AtomicsIsLockFree:
    case MatchStructure:
    case DateGetInt32OrNaN:
    case DateGetTime:
    case DataViewGetInt:
    case DataViewGetFloat:
    case ResolveRope:
    case NumberIsNaN:
    case StringIndexOf:
        return true;

    case GlobalIsNaN:
        return node->child1().useKind() == DoubleRepUse;

    case GetButterfly:
        return state.forNode(node->child1()).isType(SpecObject);

    case ArraySlice:
    case ArrayIncludes:
    case ArrayIndexOf: {
        // You could plausibly move this code around as long as you proved the
        // incoming array base structure is an original array at the hoisted location.
        // Instead of doing that extra work, we just conservatively return false.
        return false;
    }

    case GetGetter:
    case GetSetter: {
        if (!state.forNode(node->child1()).isType(SpecCell))
            return false;
        StructureAbstractValue& value = state.forNode(node->child1()).m_structure;
        if (value.isInfinite() || value.size() != 1)
            return false;

        return value[0].get() == graph.m_vm.getterSetterStructure.get();
    }

    case BottomValue:
        // If in doubt, assume that this isn't safe to execute, just because we have no way of
        // compiling this node.
        return false;

    case StoreBarrier:
    case FencedStoreBarrier:
    case PutStructure:
    case NukeStructureAndSetButterfly:
        // We conservatively assume that these cannot be put anywhere, which forces the compiler to
        // keep them exactly where they were. This is sort of overkill since the clobberize effects
        // already force these things to be ordered precisely. I'm just not confident enough in my
        // effect based memory model to rely solely on that right now.
        return false;
        
    case FilterCallLinkStatus:
    case FilterGetByStatus:
    case FilterPutByStatus:
    case FilterInByStatus:
    case FilterDeleteByStatus:
    case FilterCheckPrivateBrandStatus:
    case FilterSetPrivateBrandStatus:
    case EnumeratorPutByVal:
        // We don't want these to be moved anywhere other than where we put them, since we want them
        // to capture "profiling" at the point in control flow here the user put them.
        return false;

    case EnumeratorGetByVal:
    case GetByVal:
    case GetByValMegamorphic:
    case GetIndexedPropertyStorage:
    case GetArrayLength:
    case GetUndetachedTypeArrayLength:
    case GetTypedArrayLengthAsInt52:
    case GetVectorLength:
    case ArrayPop:
    case StringAt:
    case StringCharAt:
    case StringCharCodeAt:
    case StringCodePointAt:
        return node->arrayMode().alreadyChecked(graph, node, state.forNode(graph.child(node, 0)));

    case ArrayPush:
        return node->arrayMode().alreadyChecked(graph, node, state.forNode(graph.varArgChild(node, 1)));

    case CheckDetached:
    case GetTypedArrayByteOffset:
    case GetTypedArrayByteOffsetAsInt52:
        return !(state.forNode(node->child1()).m_type & ~(SpecTypedArrayView));

    case PutByValDirect:
    case PutByVal:
    case PutByValAlias:
    case PutByValMegamorphic:
        return node->arrayMode().modeForPut().alreadyChecked(
            graph, node, state.forNode(graph.varArgChild(node, 0)));

    case AllocatePropertyStorage:
    case ReallocatePropertyStorage:
        return state.forNode(node->child1()).m_structure.isSubsetOf(
            RegisteredStructureSet(node->transition()->previous));
        
    case GetGetterSetterByOffset: {
        // If it's an inline property, we need to make sure it's a cell before trusting what the structure set tells us.
        if (node->child1().node() == node->child2().node() && !state.forNode(node->child2()).isType(SpecCell))
            return false;

        StorageAccessData& data = node->storageAccessData();
        auto* uid = graph.identifiers()[data.identifierNumber];
        PropertyOffset desiredOffset = data.offset;
        StructureAbstractValue& value = state.forNode(node->child2()).m_structure;
        if (value.isInfinite())
            return false;
        for (unsigned i = value.size(); i--;) {
            Structure* thisStructure = value[i].get();
            if (thisStructure->isUncacheableDictionary())
                return false;
            unsigned attributes = 0;
            PropertyOffset checkOffset = thisStructure->getConcurrently(uid, attributes);
            if (checkOffset != desiredOffset || !(attributes & PropertyAttribute::Accessor))
                return false;
        }
        return true;
    }

    case GetWebAssemblyInstanceExports: {
        if (!state.forNode(node->child1()).isType(SpecCell))
            return false;

        StructureAbstractValue& value = state.forNode(node->child1()).m_structure;
        if (value.isInfinite())
            return false;
        for (unsigned i = value.size(); i--;) {
            Structure* structure = value[i].get();
            if (structure->typeInfo().type() != WebAssemblyInstanceType)
                return false;
        }

        return true;
    }

    case GetByOffset:
    case PutByOffset: {
        // If it's an inline property, we need to make sure it's a cell before trusting what the structure set tells us.
        if (node->child1().node() == node->child2().node() && !state.forNode(node->child2()).isType(SpecCell))
            return false;

        StorageAccessData& data = node->storageAccessData();
        PropertyOffset offset = data.offset;
        // Graph::isSafeToLoad() is all about proofs derived from PropertyConditions. Those don't
        // know anything about inferred types. But if we have a proof derived from watching a
        // structure that has a type proof, then the next case below will deal with it.
        if (state.structureClobberState() == StructuresAreWatched) {
            if (JSObject* knownBase = node->child2()->dynamicCastConstant<JSObject*>()) {
                if (graph.isSafeToLoad(knownBase, offset))
                    return true;
            }
        }
        
        StructureAbstractValue& value = state.forNode(node->child2()).m_structure;
        if (value.isInfinite())
            return false;
        for (unsigned i = value.size(); i--;) {
            Structure* thisStructure = value[i].get();
            if (thisStructure->isUncacheableDictionary())
                return false;
            if (!thisStructure->isValidOffset(offset))
                return false;
        }
        return true;
    }
        
    case MultiGetByOffset: {
        // We can't always guarantee that the MultiGetByOffset is safe to execute if it
        // contains loads from prototypes. If the load requires a check in IR, which is rare, then
        // we currently claim that we don't know if it's safe to execute because finding that
        // check in the abstract state would be hard. If the load requires watchpoints, we just
        // check if we're not in a clobbered state (i.e. in between a side effect and an
        // invalidation point).
        for (const MultiGetByOffsetCase& getCase : node->multiGetByOffsetData().cases) {
            GetByOffsetMethod method = getCase.method();
            switch (method.kind()) {
            case GetByOffsetMethod::Invalid:
                RELEASE_ASSERT_NOT_REACHED();
                break;
            case GetByOffsetMethod::Constant: // OK because constants are always safe to execute.
            case GetByOffsetMethod::Load: // OK because the MultiGetByOffset has its own checks for loading from self.
                break;
            case GetByOffsetMethod::LoadFromPrototype:
                // Only OK if the state isn't clobbered. That's almost always the case.
                if (state.structureClobberState() != StructuresAreWatched)
                    return false;
                if (!graph.isSafeToLoad(method.prototype()->cast<JSObject*>(), method.offset()))
                    return false;
                break;
            }
        }
        return true;
    }

    case CallDOMGetter:
    case CallDOM: {
        Node* thisNode = node->child1().node();
        StructureAbstractValue& structures = state.forNode(thisNode).m_structure;
        if (!structures.isFinite())
            return false;
        bool isSafe = true;
        const ClassInfo* classInfo = node->requiredDOMJITClassInfo();
        structures.forEach([&] (RegisteredStructure structure) {
            isSafe &= structure->classInfoForCells()->isSubClassOf(classInfo);
        });
        return isSafe;
    }

    case EnumeratorNextUpdateIndexAndMode:
    case ExtractFromTuple:
    case EnumeratorNextUpdatePropertyName:
    case ToThis:
    case CreateThis:
    case CreatePromise:
    case CreateGenerator:
    case CreateAsyncGenerator:
    case ObjectAssign:
    case ObjectCreate:
    case ObjectKeys:
    case ObjectGetOwnPropertyNames:
    case ObjectGetOwnPropertySymbols:
    case ObjectToString:
    case ReflectOwnKeys:
    case SetLocal:
    case SetCallee:
    case PutStack:
    case KillStack:
    case MovHint:
    case ZombieHint:
    case Upsilon:
    case Phi:
    case Flush:
    case SetArgumentDefinitely:
    case SetArgumentMaybe:
    case SetArgumentCountIncludingThis:
    case PhantomLocal:
    case DeleteById:
    case DeleteByVal:
    case GetById:
    case GetByIdMegamorphic:
    case GetByIdWithThis:
    case GetByIdWithThisMegamorphic:
    case GetByValWithThis:
    case GetByValWithThisMegamorphic:
    case GetByIdFlush:
    case GetByIdDirect:
    case GetByIdDirectFlush:
    case PutById:
    case PutByIdFlush:
    case PutByIdMegamorphic:
    case PutByIdWithThis:
    case PutByValWithThis:
    case PutByIdDirect:
    case PutGetterById:
    case PutSetterById:
    case PutGetterSetterById:
    case PutGetterByVal:
    case PutSetterByVal:
    case PutPrivateName:
    case PutPrivateNameById:
    case GetPrivateName:
    case GetPrivateNameById:
    case CheckPrivateBrand:
    case SetPrivateBrand:
    case DefineDataProperty:
    case DefineAccessorProperty:
    case Arrayify:
    case ArrayifyToStructure:
    case PutClosureVar:
    case PutGlobalVariable:
    case CheckBadValue:
    case RegExpExec:
    case RegExpExecNonGlobalOrSticky:
    case RegExpTest:
    case RegExpTestInline:
    case RegExpMatchFast:
    case RegExpMatchFastGlobal:
    case Call:
    case DirectCall:
    case TailCallInlinedCaller:
    case DirectTailCallInlinedCaller:
    case Construct:
    case DirectConstruct:
    case CallVarargs:
    case CallDirectEval:
    case TailCallVarargsInlinedCaller:
    case TailCallForwardVarargsInlinedCaller:
    case ConstructVarargs:
    case CallWasm:
    case CallCustomAccessorGetter:
    case CallCustomAccessorSetter:
    case VarargsLength:
    case LoadVarargs:
    case CallForwardVarargs:
    case ConstructForwardVarargs:
    case NewObject:
    case NewGenerator:
    case NewAsyncGenerator:
    case NewArray:
    case NewArrayWithSize:
    case NewArrayWithConstantSize:
    case NewArrayWithSpecies:
    case NewArrayWithSizeAndStructure:
    case NewArrayBuffer:
    case NewArrayWithSpread:
    case NewInternalFieldObject:
    case Spread:
    case NewRegexp:
    case NewMap:
    case NewSet:
    case NewSymbol:
    case ProfileType:
    case ProfileControlFlow:
    case InstanceOf:
    case InstanceOfMegamorphic:
    case InstanceOfCustom:
    case CallObjectConstructor:
    case ToPrimitive:
    case ToPropertyKey:
    case ToPropertyKeyOrNumber:
    case ToNumber:
    case ToNumeric:
    case ToObject:
    case CallNumberConstructor:
    case NumberToStringWithRadix:
    case SetFunctionName:
    case NewStringObject:
    case InByVal:
    case InByValMegamorphic:
    case InById:
    case InByIdMegamorphic:
    case EnumeratorInByVal:
    case EnumeratorHasOwnProperty:
    case HasPrivateName:
    case HasPrivateBrand:
    case HasOwnProperty:
    case PushWithScope:
    case CreateActivation:
    case CreateDirectArguments:
    case CreateScopedArguments:
    case CreateClonedArguments:
    case PutToArguments:
    case NewFunction:
    case NewGeneratorFunction:
    case NewAsyncGeneratorFunction:
    case NewAsyncFunction:
    case NewBoundFunction:
    case Jump:
    case Branch:
    case Switch:
    case EntrySwitch:
    case Return:
    case TailCall:
    case DirectTailCall:
    case TailCallVarargs:
    case TailCallForwardVarargs:
    case Throw:
    case ThrowStaticError:
    case CountExecution:
    case SuperSamplerBegin:
    case SuperSamplerEnd:
    case ForceOSRExit:
    case CPUIntrinsic:
    case CheckTraps:
    case LogShadowChickenPrologue:
    case LogShadowChickenTail:
    case NewTypedArray:
    case Unreachable:
    case ClearCatchLocals:
    case CheckTierUpInLoop:
    case CheckTierUpAtReturn:
    case CheckTierUpAndOSREnter:
    case LoopHint:
    case InvalidationPoint:
    case NotifyWrite:
    case MultiPutByOffset:
    case MultiDeleteByOffset:
    case GetPropertyEnumerator:
    case PhantomNewObject:
    case PhantomNewArrayWithConstantSize:
    case PhantomNewFunction:
    case PhantomNewGeneratorFunction:
    case PhantomNewAsyncGeneratorFunction:
    case PhantomNewAsyncFunction:
    case PhantomNewInternalFieldObject:
    case PhantomCreateActivation:
    case PhantomNewRegexp:
    case PutHint:
    case MaterializeNewObject:
    case MaterializeNewArrayWithConstantSize:
    case MaterializeCreateActivation:
    case MaterializeNewInternalFieldObject:
    case PhantomDirectArguments:
    case PhantomCreateRest:
    case PhantomSpread:
    case PhantomNewArrayWithSpread:
    case PhantomNewArrayBuffer:
    case PhantomClonedArguments:
    case ForwardVarargs:
    case CreateRest:
    case SetRegExpObjectLastIndex:
    case RecordRegExpCachedResult:
    case GetDynamicVar:
    case PutDynamicVar:
    case ResolveScopeForHoistingFuncDeclInEval:
    case ResolveScope:
    case StringValueOf:
    case WeakSetAdd:
    case WeakMapSet:
    case AtomicsAdd:
    case AtomicsAnd:
    case AtomicsCompareExchange:
    case AtomicsExchange:
    case AtomicsLoad:
    case AtomicsOr:
    case AtomicsStore:
    case AtomicsSub:
    case AtomicsXor:
    case InitializeEntrypointArguments:
    case ValueNegate:
    case GetInternalField:
    case PutInternalField:
    case DataViewSet:
    case SetAdd:
    case MapSet:
    case MapOrSetDelete:
    case StringReplace:
    case StringReplaceRegExp:
    case ArithRandom:
    case ArithIMul:
    case TryGetById:
    case StringLocaleCompare:
    case FunctionBind:
    case DateSetTime:
    case ArraySplice:
        return false;

    case StringReplaceString:
        return node->child3().useKind() == StringUse;

    case Inc:
    case Dec:
        return node->child1().useKind() != UntypedUse;

    case ValueBitAnd:
    case ValueBitXor:
    case ValueBitOr:
    case ValueBitLShift:
    case ValueBitRShift:
    case ValueAdd:
    case ValueSub:
    case ValueMul:
    case ValueDiv:
    case ValueMod:
    case ValuePow:
        return node->isBinaryUseKind(AnyBigIntUse) || node->isBinaryUseKind(BigInt32Use) || node->isBinaryUseKind(HeapBigIntUse);

    case ValueBitNot:
        return node->child1().useKind() == AnyBigIntUse || node->child1().useKind() == BigInt32Use || node->child1().useKind() == HeapBigIntUse;

    case LastNodeType:
        RELEASE_ASSERT_NOT_REACHED();
        return false;
    }
    
    RELEASE_ASSERT_NOT_REACHED();
    return false;
}

} } // namespace JSC::DFG

#endif // ENABLE(DFG_JIT)