1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*
* Copyright (C) 2016-2021 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS''
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGStoreBarrierClusteringPhase.h"
#if ENABLE(DFG_JIT)
#include "DFGDoesGC.h"
#include "DFGGraph.h"
#include "DFGInsertionSet.h"
#include "DFGMayExit.h"
#include "DFGPhase.h"
#include "JSCJSValueInlines.h"
#include <wtf/FastBitVector.h>
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace JSC { namespace DFG {
namespace {
constexpr bool verbose = false;
class StoreBarrierClusteringPhase : public Phase {
public:
StoreBarrierClusteringPhase(Graph& graph)
: Phase(graph, "store barrier clustering"_s)
, m_insertionSet(graph)
{
}
bool run()
{
size_t maxSize = 0;
for (BasicBlock* block : m_graph.blocksInNaturalOrder())
maxSize = std::max(maxSize, block->size());
m_barrierPoints.resize(maxSize);
for (BasicBlock* block : m_graph.blocksInNaturalOrder()) {
size_t blockSize = block->size();
doBlock(block);
m_barrierPoints.clearRange(0, blockSize);
}
return true;
}
private:
// This summarizes everything we need to remember about a barrier.
struct ChildAndOrigin {
ChildAndOrigin() { }
ChildAndOrigin(Node* child, CodeOrigin semanticOrigin)
: child(child)
, semanticOrigin(semanticOrigin)
{
}
Node* child { nullptr };
CodeOrigin semanticOrigin;
};
void doBlock(BasicBlock* block)
{
ASSERT(m_barrierPoints.isEmpty());
// First identify the places where we would want to place all of the barriers based on a
// backwards analysis. We use the futureGC flag to tell us if we had seen a GC. Since this
// is a backwards analysis, when we get to a node, futureGC tells us if a GC will happen
// in the future after that node.
bool futureGC = true;
for (unsigned nodeIndex = block->size(); nodeIndex--;) {
Node* node = block->at(nodeIndex);
// This is a backwards analysis, so exits require conservatism. If we exit, then there
// probably will be a GC in the future! If we needed to then we could lift that
// requirement by either (1) having a StoreBarrierHint that tells OSR exit to barrier that
// value or (2) automatically barriering any DFG-live Node on OSR exit. Either way, it
// would be weird because it would create a new root for OSR availability analysis. I
// don't have evidence that it would be worth it.
if (doesGC(m_graph, node) || mayExit(m_graph, node) != DoesNotExit) {
dataLogLnIf(verbose,
"Possible GC point at ", node, "\n",
" doesGC = ", doesGC(m_graph, node), "\n",
" mayExit = ", mayExit(m_graph, node));
futureGC = true;
continue;
}
if (node->isStoreBarrier() && futureGC) {
m_barrierPoints[nodeIndex] = true;
futureGC = false;
}
}
// Now we run forward and collect the barriers. When we hit a barrier point, insert all of
// them with a fence.
for (unsigned nodeIndex = 0; nodeIndex < block->size(); ++nodeIndex) {
Node* node = block->at(nodeIndex);
if (!node->isStoreBarrier())
continue;
DFG_ASSERT(m_graph, node, !node->origin.wasHoisted);
DFG_ASSERT(m_graph, node, node->child1().useKind() == KnownCellUse, node->op(), node->child1().useKind());
NodeOrigin origin = node->origin;
m_neededBarriers.append(ChildAndOrigin(node->child1().node(), origin.semantic));
node->remove(m_graph);
if (!m_barrierPoints[nodeIndex])
continue;
std::sort(
m_neededBarriers.begin(), m_neededBarriers.end(),
[&] (const ChildAndOrigin& a, const ChildAndOrigin& b) -> bool {
return a.child < b.child;
});
removeRepeatedElements(
m_neededBarriers,
[&] (const ChildAndOrigin& a, const ChildAndOrigin& b) -> bool{
return a.child == b.child;
});
for (auto iter = m_neededBarriers.begin(); iter != m_neededBarriers.end(); ++iter) {
Node* child = iter->child;
CodeOrigin semanticOrigin = iter->semanticOrigin;
NodeType type;
if (iter == m_neededBarriers.begin())
type = FencedStoreBarrier;
else
type = StoreBarrier;
m_insertionSet.insertNode(
nodeIndex, SpecNone, type, origin.withSemantic(semanticOrigin),
Edge(child, KnownCellUse));
}
m_neededBarriers.shrink(0);
}
m_insertionSet.execute(block);
}
InsertionSet m_insertionSet;
FastBitVector m_barrierPoints;
Vector<ChildAndOrigin> m_neededBarriers;
};
} // anonymous namespace
bool performStoreBarrierClustering(Graph& graph)
{
return runPhase<StoreBarrierClusteringPhase>(graph);
}
} } // namespace JSC::DFG
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
#endif // ENABLE(DFG_JIT)
|