1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
|
/*
* Copyright (C) 2014, 2015 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "DFGStructureAbstractValue.h"
#if ENABLE(DFG_JIT)
#include "DFGGraph.h"
#include "JSCJSValueInlines.h"
WTF_ALLOW_UNSAFE_BUFFER_USAGE_BEGIN
namespace JSC { namespace DFG {
#if ASSERT_ENABLED
void StructureAbstractValue::assertIsRegistered(Graph& graph) const
{
if (isTop())
return;
for (unsigned i = size(); i--;)
graph.assertIsRegistered(at(i).get());
}
#endif // ASSERT_ENABLED
void StructureAbstractValue::clobber()
{
// The premise of this approach to clobbering is that anytime we introduce
// a watchable structure into an abstract value, we watchpoint it. You can assert
// that this holds by calling assertIsWatched().
if (isTop())
return;
setClobbered(true);
if (m_set.isThin()) {
if (!m_set.singleEntry())
return;
if (!m_set.singleEntry()->dfgShouldWatch())
makeTopWhenThin();
return;
}
RegisteredStructureSet::OutOfLineList* list = m_set.list();
for (unsigned i = list->m_length; i--;) {
if (!list->list()[i]->dfgShouldWatch()) {
makeTop();
return;
}
}
}
void StructureAbstractValue::observeTransition(RegisteredStructure from, RegisteredStructure to)
{
ASSERT(!from->dfgShouldWatch());
if (isTop())
return;
if (!m_set.contains(from))
return;
if (!m_set.add(to))
return;
if (m_set.size() > polymorphismLimit)
makeTop();
}
void StructureAbstractValue::observeTransitions(const TransitionVector& vector)
{
if (isTop())
return;
RegisteredStructureSet newStructures;
for (unsigned i = vector.size(); i--;) {
ASSERT(!vector[i].previous->dfgShouldWatch());
if (!m_set.contains(vector[i].previous))
continue;
newStructures.add(vector[i].next);
}
if (!m_set.merge(newStructures))
return;
if (m_set.size() > polymorphismLimit)
makeTop();
}
bool StructureAbstractValue::add(RegisteredStructure structure)
{
if (isTop())
return false;
if (!m_set.add(structure))
return false;
if (m_set.size() > polymorphismLimit)
makeTop();
return true;
}
bool StructureAbstractValue::merge(const RegisteredStructureSet& other)
{
if (isTop())
return false;
return mergeNotTop(other);
}
bool StructureAbstractValue::mergeSlow(const StructureAbstractValue& other)
{
// It isn't immediately obvious that the code below is doing the right thing, so let's go
// through it.
//
// This not clobbered, other not clobbered: Clearly, we don't want to make anything clobbered
// since we just have two sets and we are merging them. mergeNotTop() can handle this just
// fine.
//
// This clobbered, other clobbered: Clobbered means that we have a set of things, plus we
// temporarily have the set of all things but the latter will go away once we hit the next
// invalidation point. This allows us to merge two clobbered sets the natural way. For now
// the set will still be TOP (and so we keep the clobbered bit set), but we know that after
// invalidation, we will have the union of the this and other.
//
// This clobbered, other not clobbered: It's safe to merge in other for both before and after
// invalidation, so long as we leave the clobbered bit set. Before invalidation this has no
// effect since the set will still appear to have all things in it. The way to think about
// what invalidation would do is imagine if we had a set A that was clobbered and a set B
// that wasn't and we considered the following two cases. Note that we expect A to be the
// same at the end in both cases:
//
// A.merge(B) InvalidationPoint
// InvalidationPoint A.merge(B)
//
// The fact that we expect A to be the same in both cases means that we want to merge other
// into this but keep the clobbered bit.
//
// This not clobbered, other clobbered: This is just the converse of the previous case. We
// want to merge other into this and set the clobbered bit.
bool changed = false;
if (!isClobbered() && other.isClobbered()) {
setClobbered(true);
changed = true;
}
changed |= mergeNotTop(other.m_set);
return changed;
}
bool StructureAbstractValue::mergeNotTop(const RegisteredStructureSet& other)
{
if (!m_set.merge(other))
return false;
if (m_set.size() > polymorphismLimit)
makeTop();
return true;
}
void StructureAbstractValue::filter(const RegisteredStructureSet& other)
{
if (isTop()) {
m_set = other;
return;
}
if (isClobbered()) {
// We have two choices here:
//
// Do nothing: It's legal to keep our set intact, which would essentially mean that for
// now, our set would behave like TOP but after the next invalidation point it wold be
// a finite set again. This may be a good choice if 'other' is much bigger than our
// m_set.
//
// Replace m_set with other and clear the clobber bit: This is also legal, and means that
// we're no longer clobbered. This is usually better because it immediately gives us a
// smaller set.
//
// This scenario should come up rarely. We usually don't do anything to an abstract value
// after it is clobbered. But we apply some heuristics.
if (other.size() > m_set.size() + clobberedSupremacyThreshold)
return; // Keep the clobbered set.
m_set = other;
setClobbered(false);
return;
}
m_set.filter(other);
}
void StructureAbstractValue::filter(const StructureAbstractValue& other)
{
if (other.isTop())
return;
if (other.isClobbered()) {
if (isTop())
return;
if (!isClobbered()) {
// See justification in filter(const RegisteredStructureSet&), above. An unclobbered set is
// almost always better.
if (m_set.size() > other.m_set.size() + clobberedSupremacyThreshold)
*this = other; // Keep the clobbered set.
return;
}
m_set.filter(other.m_set);
return;
}
filter(other.m_set);
}
void StructureAbstractValue::filterSlow(SpeculatedType type)
{
if (!(type & SpecCell)) {
clear();
return;
}
ASSERT(!isTop());
m_set.genericFilter(
[&] (RegisteredStructure structure) {
return !!(speculationFromStructure(structure.get()) & type);
});
}
void StructureAbstractValue::filterClassInfoSlow(const ClassInfo* classInfo)
{
ASSERT(!isTop());
m_set.genericFilter(
[&] (RegisteredStructure structure) {
return structure->classInfoForCells()->isSubClassOf(classInfo);
});
}
bool StructureAbstractValue::contains(RegisteredStructure structure) const
{
if (isInfinite())
return true;
return m_set.contains(structure);
}
bool StructureAbstractValue::contains(Structure* structure) const
{
if (isInfinite())
return true;
return m_set.toStructureSet().contains(structure);
}
bool StructureAbstractValue::isSubsetOf(const RegisteredStructureSet& other) const
{
if (isInfinite())
return false;
return m_set.isSubsetOf(other);
}
bool StructureAbstractValue::isSubsetOf(const StructureAbstractValue& other) const
{
if (isTop())
return false;
if (other.isTop())
return true;
if (isClobbered() == other.isClobbered())
return m_set.isSubsetOf(other.m_set);
// Here it gets tricky. If in doubt, return false!
if (isClobbered())
return false; // A clobbered set is never a subset of an unclobbered set.
// An unclobbered set is currently a subset of a clobbered set, but it may not be so after
// invalidation.
return m_set.isSubsetOf(other.m_set);
}
bool StructureAbstractValue::isSupersetOf(const RegisteredStructureSet& other) const
{
if (isInfinite())
return true;
return m_set.isSupersetOf(other);
}
bool StructureAbstractValue::overlaps(const RegisteredStructureSet& other) const
{
if (isInfinite())
return true;
return m_set.overlaps(other);
}
bool StructureAbstractValue::overlaps(const StructureAbstractValue& other) const
{
if (other.isInfinite())
return true;
return overlaps(other.m_set);
}
bool StructureAbstractValue::isSubClassOf(const ClassInfo* classInfo) const
{
if (isInfinite())
return false;
// Note that this function returns true if the structure set is empty.
for (const RegisteredStructure structure : m_set) {
if (!structure->classInfoForCells()->isSubClassOf(classInfo))
return false;
}
return true;
}
bool StructureAbstractValue::isNotSubClassOf(const ClassInfo* classInfo) const
{
if (isInfinite())
return false;
// Note that this function returns true if the structure set is empty.
for (const RegisteredStructure structure : m_set) {
if (structure->classInfoForCells()->isSubClassOf(classInfo))
return false;
}
return true;
}
bool StructureAbstractValue::equalsSlow(const StructureAbstractValue& other) const
{
ASSERT(m_set.m_pointer != other.m_set.m_pointer);
ASSERT(!isTop());
ASSERT(!other.isTop());
return m_set == other.m_set
&& isClobbered() == other.isClobbered();
}
void StructureAbstractValue::dumpInContext(PrintStream& out, DumpContext* context) const
{
if (isClobbered())
out.print("Clobbered:");
if (isTop())
out.print("TOP");
else
out.print(inContext(m_set.toStructureSet(), context));
}
void StructureAbstractValue::dump(PrintStream& out) const
{
dumpInContext(out, nullptr);
}
void StructureAbstractValue::validateReferences(const TrackedReferences& trackedReferences) const
{
if (isTop())
return;
m_set.validateReferences(trackedReferences);
}
} } // namespace JSC::DFG
WTF_ALLOW_UNSAFE_BUFFER_USAGE_END
#endif // ENABLE(DFG_JIT)
|